Suppr超能文献

基于深度卷积神经网络的心肌 T mapping 图像欠采样径向采集伪影抑制。

Deep convolution neural networks based artifact suppression in under-sampled radial acquisitions of myocardial T mapping images.

机构信息

Department of Medicine, Beth Israel Deaconess Medical Centre and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, United States of America.

Department of Computer Science, Technical University of Munich, Munich, Germany.

出版信息

Phys Med Biol. 2020 Nov 24;65(22):225024. doi: 10.1088/1361-6560/abc04f.

Abstract

We developed a deep convolutional neural network (CNN) based method to remove streaking artefact from accelerated radial acquisitions of myocardial T -mapping images. A deep CNN based on a modified U-Net architecture was developed and trained to remove the streaking artefacts from under-sampled T mapping images. A total of 2090 T -weighted images for 33 patients (55 ± 15 years, 19 males) and five healthy subjects (30 ± 14 years, 2 males) were used for training and testing the network. The images were acquired using radial slice interleaved T mapping sequence (STONE) and retrospectively under-sampled to achieve acceleration rate of 4 (corresponding to 48 spokes). The dataset was split into training and testing subsets with 23 subjects (60%) and 15 subjects (40%), respectively. For generating voxel-wise T maps, a two-parameter fitting model was used. Network performance was evaluated using normalized mean square error (NMSE), structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR) metrics. The proposed network allowed fast (<0.3 s/image) removal of the artefact from all T -weighted testing images and the corresponding T maps with PSNR = 64.3 ± 1.02, NMSE = 0.2 ± 0.09 and SSIM = 0.9 ± 0.3 × 10. There was no statistically significant difference between the measured T maps for both per-subject (reference: 1085 ± 37 ms, CNN: 1088 ± 37 ms, p = 0.4) and per-segment (reference: 1084 ± 48 ms, CNN: 1083 ± 58 ms, p = 0.9) analyses. In summary, deep CNN allows fast and reliable removal of streaking artefact from under-sampled radial T mapping images. Our results show that the highly non-linear operations of deep CNN processing of T mapping images do not impact accurate reconstruction of myocardial T maps.

摘要

我们开发了一种基于深度卷积神经网络(CNN)的方法,用于去除心肌 T 映射图像加速径向采集的条纹伪影。开发了一种基于改进的 U-Net 架构的深度 CNN,用于从欠采样的 T 映射图像中去除条纹伪影。总共使用了 33 名患者(55±15 岁,19 名男性)和 5 名健康受试者(30±14 岁,2 名男性)的 2090 张 T 加权图像来训练和测试网络。图像是使用径向切片交错 T 映射序列(STONE)采集的,并进行回顾性欠采样,以实现 4 倍的加速率(对应于 48 个辐条)。数据集分为训练和测试子集,分别有 23 名受试者(60%)和 15 名受试者(40%)。为了生成体素级 T 映射,使用了双参数拟合模型。使用归一化均方误差(NMSE)、结构相似性指数(SSIM)和峰值信噪比(PSNR)度量来评估网络性能。该网络允许快速(<0.3 s/image)从所有 T 加权测试图像及其对应的 T 映射中去除伪影,PSNR = 64.3 ± 1.02、NMSE = 0.2 ± 0.09 和 SSIM = 0.9 ± 0.3×10。在基于个体(参考:1085±37 ms,CNN:1088±37 ms,p=0.4)和基于节段(参考:1084±48 ms,CNN:1083±58 ms,p=0.9)的测量 T 映射中,两种方法之间没有统计学上的显著差异。总之,深度 CNN 允许快速可靠地从欠采样的径向 T 映射图像中去除条纹伪影。我们的结果表明,深度 CNN 对 T 映射图像的高度非线性处理不会影响心肌 T 映射的准确重建。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验