Section of Epidemiology, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen K, Denmark; Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Windmill Road, Oxford, UK; Laboratory of Biostatistics, Epidemiology, Clinical Research and Health Economics, EA2415, Montpellier University, Montpellier, France; Departments of Anesthesia & Health Research Methods, Evidence, and Impact, Michael DeGroote School of Medicine, Faculty of Health Sciences, McMaster University and the Perioperative Research Group, Population Health Research Institute, Hamilton, Canada; Department of Pharmacy, Nîmes University Hospital, University of Montpellier, Nîmes, France.
Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Windmill Road, Oxford, UK; NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK.
J Clin Epidemiol. 2020 Sep;125:47-56. doi: 10.1016/j.jclinepi.2020.05.022. Epub 2020 May 25.
Causal treatment effects are estimated at the population level in randomized controlled trials, while clinical decision is often to be made at the individual level in practice. We aim to show how clinical prediction models used under a counterfactual framework may help to infer individualized treatment effects.
As an illustrative example, we reanalyze the International Stroke Trial. This large, multicenter trial enrolled 19,435 adult patients with suspected acute ischemic stroke from 36 countries, and reported a modest average benefit of aspirin (vs. no aspirin) on a composite outcome of death or dependency at 6 months. We derive and validate multivariable logistic regression models that predict the patient counterfactual risks of outcome with and without aspirin, conditionally on 23 predictors.
The counterfactual prediction models display good performance in terms of calibration and discrimination (validation c-statistics: 0.798 and 0.794). Comparing the counterfactual predicted risks on an absolute difference scale, we show that aspirin-despite an average benefit-may increase the risk of death or dependency at 6 months (compared with the control) in a quarter of stroke patients.
Counterfactual prediction models could help researchers and clinicians (i) infer individualized treatment effects and (ii) better target patients who may benefit from treatments.
在随机对照试验中,因果治疗效果是在人群水平上估计的,而在实践中,临床决策通常是在个体水平上做出的。我们旨在展示在反事实框架下使用的临床预测模型如何帮助推断个体化的治疗效果。
作为一个说明性的例子,我们重新分析了国际中风试验。这项大型、多中心试验纳入了来自 36 个国家的 19435 名疑似急性缺血性中风的成年患者,报告阿司匹林(与无阿司匹林相比)对 6 个月时死亡或依赖的复合结局有适度的平均益处。我们得出并验证了多变量逻辑回归模型,这些模型预测了患者在有和无阿司匹林的情况下,在 23 个预测因素条件下的结果的反事实风险。
反事实预测模型在校准和区分方面表现良好(验证 C 统计量:0.798 和 0.794)。在绝对差异尺度上比较反事实预测的风险,我们表明,尽管阿司匹林有平均益处,但在四分之一的中风患者中,阿司匹林可能会增加 6 个月时死亡或依赖的风险(与对照组相比)。
反事实预测模型可以帮助研究人员和临床医生(i)推断个体化的治疗效果,(ii)更好地针对可能受益于治疗的患者。