Suppr超能文献

干预下的预测:使用纵向观察数据评估反事实性能。

Prediction Under Interventions: Evaluation of Counterfactual Performance Using Longitudinal Observational Data.

机构信息

From the Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, United Kingdom.

Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands.

出版信息

Epidemiology. 2024 May 1;35(3):329-339. doi: 10.1097/EDE.0000000000001713. Epub 2024 Apr 18.

Abstract

Predictions under interventions are estimates of what a person's risk of an outcome would be if they were to follow a particular treatment strategy, given their individual characteristics. Such predictions can give important input to medical decision-making. However, evaluating the predictive performance of interventional predictions is challenging. Standard ways of evaluating predictive performance do not apply when using observational data, because prediction under interventions involves obtaining predictions of the outcome under conditions that are different from those that are observed for a subset of individuals in the validation dataset. This work describes methods for evaluating counterfactual performance of predictions under interventions for time-to-event outcomes. This means we aim to assess how well predictions would match the validation data if all individuals had followed the treatment strategy under which predictions are made. We focus on counterfactual performance evaluation using longitudinal observational data, and under treatment strategies that involve sustaining a particular treatment regime over time. We introduce an estimation approach using artificial censoring and inverse probability weighting that involves creating a validation dataset mimicking the treatment strategy under which predictions are made. We extend measures of calibration, discrimination (c-index and cumulative/dynamic AUCt) and overall prediction error (Brier score) to allow assessment of counterfactual performance. The methods are evaluated using a simulation study, including scenarios in which the methods should detect poor performance. Applying our methods in the context of liver transplantation shows that our procedure allows quantification of the performance of predictions supporting crucial decisions on organ allocation.

摘要

干预下的预测是指在给定个体特征的情况下,一个人如果遵循特定的治疗策略,其结局风险的估计。这些预测可以为医疗决策提供重要的依据。然而,评估干预性预测的预测性能具有挑战性。当使用观察性数据时,标准的预测性能评估方法并不适用,因为干预下的预测涉及在与验证数据集中一部分个体观察到的条件不同的条件下,对结局进行预测。本研究描述了用于评估时间事件结局干预下预测的反事实性能的方法。这意味着,我们旨在评估如果所有个体都遵循预测所依据的治疗策略,预测将如何与验证数据匹配。我们专注于使用纵向观察性数据和涉及随着时间推移维持特定治疗方案的治疗策略进行反事实性能评估。我们引入了一种使用人工删失和逆概率加权的估计方法,该方法涉及创建一个验证数据集,以模拟预测所依据的治疗策略。我们扩展了校准、区分度(c 指数和累积/动态 AUCt)和总体预测误差(Brier 评分)的度量方法,以允许评估反事实性能。该方法通过模拟研究进行了评估,包括方法应该检测到性能不佳的情况。在肝移植的背景下应用我们的方法表明,我们的程序可以量化支持器官分配关键决策的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5b3/11332371/e3396a1b5b4b/ede-35-329-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验