Department of Chemistry and Biochemistry, Ohio University, 391 Clippinger Laboratories, Athens, Ohio 45701, United States.
Department of Chemistry and Biochemistry, University of Missouri, 1 University Blvd, St. Louis, Missouri 63121, United States.
Anal Chem. 2020 Jul 7;92(13):9305-9311. doi: 10.1021/acs.analchem.0c01640. Epub 2020 Jun 11.
We demonstrate a method for facile differentiation of acidic, isomeric metabolites by attaching high proton affinity, piperidine-based chemical tags to each carboxylic acid group. These tags attach with high efficiency to the analytes, increase the signal, and result in the formation of multiply-charged cations. We illustrate the present approach with citrate and isocitrate, which are isomeric metabolites each containing three carboxylic acid groups. We observe a 20-fold increase in signal-to-noise for citrate and an 8-fold increase for isocitrate as compared to detection of the untagged analytes in negative mode. Collision-induced dissociation of the triply tagged, triply charged analytes results in distinct tandem mass spectra. The phenylene spacer groups limit proton mobility and enable access to structurally informative C-C bond cleavage reactions. Modeling of the gas-phase structures and dissociation chemistry of these triply charged analyte ions highlights the importance of hydroxyl proton mobilization in this low proton mobility environment. Tandem mass spectrometric analyses of deuterated congeners and MS spectra are consistent with the proposed fragment ion structures and mechanisms of formation. Direct evidence that these chemistries are more generally applicable is provided by subsequent analyses of doubly tagged, doubly charged malate ions. Future work will focus on applying these methods to identify new metabolites and development of general rules for structural determination of tagged metabolites with multiple charges.
我们展示了一种通过将高质子亲和性的哌啶基化学标签连接到每个羧酸基团上来轻松区分酸性、同分异构体代谢物的方法。这些标签与分析物高效结合,增加了信号,并导致多电荷阳离子的形成。我们用柠檬酸和异柠檬酸来说明目前的方法,它们是各含有三个羧酸基团的同分异构体代谢物。与在负离子模式下检测未标记的分析物相比,我们观察到柠檬酸的信号噪声比增加了 20 倍,异柠檬酸的信号噪声比增加了 8 倍。三重标记、三重电荷的分析物的碰撞诱导解离导致独特的串联质谱。苯环间隔基限制质子迁移并能够进行结构信息丰富的 C-C 键断裂反应。这些三重电荷分析物离子的气相结构和解离化学的建模突出了在这种低质子迁移环境中羟基质子迁移的重要性。氘代同系物的串联质谱分析和 MS 谱与所提出的片段离子结构和形成机制一致。随后对双标记、双电荷的苹果酸离子的分析为这些化学物质更普遍适用的直接证据提供了依据。未来的工作将集中在应用这些方法来鉴定新的代谢物,并制定用于确定具有多个电荷的标记代谢物的结构的一般规则。