Castilho Miguel, de Ruijter Mylène, Beirne Stephen, Villette Claire C, Ito Keita, Wallace Gordon G, Malda Jos
Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Regenerative Medicine Center Utrecht, Utrecht, The Netherlands.
Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, Utrecht, The Netherlands.
Trends Biotechnol. 2020 Dec;38(12):1316-1328. doi: 10.1016/j.tibtech.2020.04.014. Epub 2020 May 25.
Most available 3D biofabrication technologies rely on single-component deposition methods, such as inkjet, extrusion, or light-assisted printing. It is unlikely that any of these technologies used individually would be able to replicate the complexity and functionality of living tissues. Recently, new biofabrication approaches have emerged that integrate multiple manufacturing technologies into a single biofabrication platform. This has led to fabricated structures with improved functionality. In this review, we provide a comprehensive overview of recent advances in the integration of different manufacturing technologies with the aim to fabricate more functional tissue structures. We provide our vision on the future of additive manufacturing (AM) technology, digital design, and the use of artificial intelligence (AI) in the field of biofabrication.
大多数现有的3D生物制造技术依赖于单一组分沉积方法,如喷墨、挤出或光辅助打印。单独使用这些技术中的任何一种都不太可能复制活组织的复杂性和功能。最近,出现了新的生物制造方法,将多种制造技术集成到单个生物制造平台中。这导致制造出具有改进功能的结构。在本综述中,我们全面概述了不同制造技术集成方面的最新进展,旨在制造出功能更强大的组织结构。我们对增材制造(AM)技术、数字设计以及人工智能(AI)在生物制造领域的应用前景提出了展望。