Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853.
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13248-13255. doi: 10.1073/pnas.1919816117. Epub 2020 May 28.
Metal detoxification is essential for bacteria's survival in adverse environments and their pathogenesis in hosts. Understanding the underlying mechanisms is crucial for devising antibacterial treatments. In the Gram-negative bacterium , membrane-bound sensor CusS and its response regulator CusR together regulate the transcription of the operon that plays important roles in cells' resistance to copper/silver, and they belong to the two-component systems (TCSs) that are ubiquitous across various organisms and regulate diverse cellular functions. In vitro protein reconstitution and associated biochemical/physical studies have provided significant insights into the functions and mechanisms of CusS-CusR and related TCSs. Such studies are challenging regarding multidomain membrane proteins like CusS and also lack the physiological environment, particularly the native spatial context of proteins inside a cell. Here, we use stroboscopic single-molecule imaging and tracking to probe the dynamic behaviors of both CusS and CusR in live cells, in combination with protein- or residue-specific genetic manipulations. We find that copper stress leads to a cellular protein concentration increase and a concurrent mobilization of CusS out of clustered states in the membrane. We show that the mobilized CusS has significant interactions with CusR for signal transduction and that CusS's affinity toward CusR switches on upon sensing copper at the interfacial metal-binding sites in CusS's periplasmic sensor domains, prior to ATP binding and autophosphorylation at CusS's cytoplasmic kinase domain(s). The observed CusS mobilization upon stimulation and its surprisingly early interaction with CusR likely ensure an efficient signal transduction by providing proper conformation and avoiding futile cross talks.
金属解毒对于细菌在不利环境中的生存和在宿主中的发病机制至关重要。了解其潜在机制对于设计抗菌治疗方法至关重要。在革兰氏阴性菌中,膜结合传感器 CusS 及其响应调节剂 CusR 共同调节 操纵子的转录,该操纵子在细胞对铜/银的抗性中发挥重要作用,它们属于在各种生物体中普遍存在的双组分系统 (TCS),调节多种细胞功能。体外蛋白质重组及其相关的生化/物理研究为 CusS-CusR 及其相关 TCS 的功能和机制提供了重要的见解。对于像 CusS 这样的多结构域膜蛋白,此类研究具有挑战性,并且还缺乏生理环境,特别是细胞内蛋白质的天然空间环境。在这里,我们使用频闪单分子成像和跟踪技术来探测活细胞中 CusS 和 CusR 的动态行为,并结合蛋白质或残基特异性遗传操作。我们发现铜胁迫导致细胞内蛋白质浓度增加,并伴随着 CusS 从膜中的聚集状态中动员出来。我们表明,动员的 CusS 与 CusR 具有显著的信号转导相互作用,并且 CusS 对 CusR 的亲和力在 CusS 的周质传感器结构域中的界面金属结合位点感应到铜后,在 CusS 的细胞质激酶结构域(s)结合 ATP 和自动磷酸化之前就会开启。在受到刺激时观察到的 CusS 动员及其与 CusR 的惊人早期相互作用可能通过提供适当的构象和避免无用的交叉对话来确保有效的信号转导。