Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.
Instituto de Biología Molecular y Celular de Rosario, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Santa Fe, Argentina.
mSphere. 2020 Dec 23;5(6):e01193-20. doi: 10.1128/mSphere.01193-20.
Two-component systems control periplasmic Cu homeostasis in Gram-negative bacteria. In characterized systems such as CusRS, upon Cu binding to the periplasmic sensing region of CusS, a cytoplasmic phosphotransfer domain of the sensor phosphorylates the response regulator CusR. This drives the expression of efflux transporters, chaperones, and redox enzymes to ameliorate metal toxic effects. Here, we show that the two-component sensor histidine kinase CopS exhibits a Cu-dependent phosphatase activity that maintains CopR in a nonphosphorylated state when the periplasmic Cu levels are below the activation threshold of CopS. Upon Cu binding to the sensor, the phosphatase activity is blocked and the phosphorylated CopR activates transcription of the CopRS regulon. Supporting the model, mutagenesis experiments revealed that the Δ strain exhibits maximal expression of the CopRS regulon, lower intracellular Cu levels, and increased Cu tolerance compared to wild-type cells. The invariant phosphoacceptor residue His of CopS was not required for the phosphatase activity itself but was necessary for its Cu dependency. To sense the metal, the periplasmic domain of CopS binds two Cu ions at its dimeric interface. Homology modeling of CopS based on CusS structure (four Ag binding sites) clearly supports the different binding stoichiometries in the two systems. Interestingly, CopS binds Cu with 3 × 10 M affinity, pointing to the absence of free (hydrated) Cu in the periplasm. Copper is a micronutrient required as cofactor in redox enzymes. When free, copper is toxic, mismetallating proteins and generating damaging free radicals. Consequently, copper overload is a strategy that eukaryotic cells use to combat pathogens. Bacteria have developed copper-sensing transcription factors to control copper homeostasis. The cell envelope is the first compartment that has to cope with copper stress. Dedicated two-component systems control the periplasmic response to metal overload. This paper shows that the sensor kinase of the copper-sensing two-component system present in exhibits a signal-dependent phosphatase activity controlling the activation of its cognate response regulator, distinct from previously described periplasmic Cu sensors. Importantly, the data show that the system is activated by copper levels compatible with the absence of free copper in the cell periplasm. These observations emphasize the diversity of molecular mechanisms that have evolved in bacteria to manage the copper cellular distribution.
双组分系统控制革兰氏阴性菌细胞周质中的铜稳态。在已鉴定的系统中,如 CusRS,当 Cu 结合到 CusS 的周质感应区域时,传感器的细胞质磷酸转移结构域会使感应调节子 CusR 发生磷酸化。这会驱动外排转运蛋白、伴侣和氧化还原酶的表达,以减轻金属毒性作用。在这里,我们表明,双组分传感器组氨酸激酶 CopS 表现出 Cu 依赖性磷酸酶活性,当周质 Cu 水平低于 CopS 的激活阈值时,该活性可使 CopR 保持非磷酸化状态。当 Cu 结合到传感器上时,磷酸酶活性被阻断,磷酸化的 CopR 激活 CopRS 调控子的转录。支持该模型的实验表明,与野生型细胞相比,Δ 菌株表现出最大的 CopRS 调控子表达、更低的细胞内 Cu 水平和更高的 Cu 耐受性。CopS 的不变磷酸受体残基 His 对于磷酸酶活性本身不是必需的,但对于其 Cu 依赖性是必需的。为了感应金属,CopS 的周质结构域在其二聚体界面上结合两个 Cu 离子。基于 CusS 结构(四个 Ag 结合位点)的 CopS 同源建模清楚地支持了两个系统中不同的结合化学计量。有趣的是,CopS 与 Cu 的结合亲和力为 3×10 M,这表明周质中没有游离(水合)Cu。铜是作为氧化还原酶辅助因子所需的微量营养素。当游离时,铜是有毒的,会错配蛋白质并产生有害的自由基。因此,铜过载是真核细胞用来对抗病原体的一种策略。细菌已经开发出铜感应转录因子来控制铜稳态。细胞包膜是第一个必须应对铜胁迫的隔室。专用的双组分系统控制对金属过载的周质反应。本文表明,存在于 中的铜感应双组分系统的传感器激酶具有信号依赖性磷酸酶活性,可控制其同源感应调节子的激活,与先前描述的周质 Cu 传感器不同。重要的是,数据表明该系统是由与细胞周质中不存在游离铜相容的铜水平激活的。这些观察结果强调了细菌中为管理铜细胞分布而进化出的分子机制的多样性。