Haslam Richard P, Hamilton Mary L, Economou Chloe K, Smith Richard, Hassall Kirsty L, Napier Johnathan A, Sayanova Olga
1Department of Plant Sciences, Rothamsted Research, Harpenden, Herts AL5 2JQ UK.
St Albans Girls School, St Albans, Hertfordshire, AL3 6DB UK.
Biotechnol Biofuels. 2020 May 14;13:87. doi: 10.1186/s13068-020-01726-8. eCollection 2020.
Oleaginous microalgae represent a valuable resource for the production of high-value molecules. Considering the importance of omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs) for human health and nutrition the yields of high-value eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) require significant improvement to meet demand; however, the current cost of production remains high. A promising approach is to metabolically engineer strains with enhanced levels of triacylglycerols (TAGs) enriched in EPA and DHA.
Recently, we have engineered the marine diatom to accumulate enhanced levels of DHA in TAG. To further improve the incorporation of omega-3 LC-PUFAs in TAG, we focused our effort on the identification of a type 2 acyl-CoA:diacylglycerol acyltransferase (DGAT) capable of improving lipid production and the incorporation of DHA in TAG. DGAT is a key enzyme in lipid synthesis. Following a diatom based in vivo screen of candidate DGATs, a native was taken forward for detailed characterisation. Overexpression of the endogenous was confirmed by qRT-PCR and the transgenic strain grew successfully in comparison to wildtype. has broad substrate specificity with preferences for C16 and LC-PUFAs acyl groups. Moreover, the overexpression of an endogenous resulted in higher lipid yields and enhanced levels of DHA in TAG. Furthermore, a combined overexpression of the endogenous and ectopic expression of a Δ5-elongase showed how iterative metabolic engineering can be used to increase DHA and TAG content, irrespective of nitrogen treatment.
This study provides further insight into lipid metabolism in and suggests a metabolic engineering approach for the efficient production of EPA and DHA in microalgae.
产油微藻是生产高价值分子的宝贵资源。考虑到ω-3长链多不饱和脂肪酸(LC-PUFAs)对人类健康和营养的重要性,高价值的二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)的产量需要显著提高以满足需求;然而,目前的生产成本仍然很高。一种有前景的方法是对富含EPA和DHA的三酰甘油(TAGs)水平提高的菌株进行代谢工程改造。
最近,我们对海洋硅藻进行了工程改造,使其在TAG中积累更高水平的DHA。为了进一步提高ω-3 LC-PUFAs在TAG中的掺入,我们致力于鉴定一种能够提高脂质产量以及DHA在TAG中掺入量的2型酰基辅酶A:二酰甘油酰基转移酶(DGAT)。DGAT是脂质合成中的关键酶。在基于硅藻的候选DGAT体内筛选之后,一个天然的[具体名称未给出]被推进进行详细表征。通过qRT-PCR证实了内源性[具体名称未给出]的过表达,并且与野生型相比,转基因菌株成功生长。[具体名称未给出]具有广泛的底物特异性,偏好C16和LC-PUFAs酰基。此外,内源性[具体名称未给出]的过表达导致更高的脂质产量以及TAG中DHA水平的提高。此外,内源性[具体名称未给出]的联合过表达和Δ5-延长酶的异位表达表明,无论氮处理如何,迭代代谢工程可用于增加DHA和TAG含量。
本研究进一步深入了解了[具体名称未给出]中的脂质代谢,并提出了一种在微藻中高效生产EPA和DHA的代谢工程方法。