Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland.
Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
BMC Plant Biol. 2024 Apr 23;24(1):309. doi: 10.1186/s12870-024-05014-7.
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), belonging to ω-3 long-chain polyunsaturated fatty acids (ω3-LC-PUFAs), are essential components of human diet. They are mainly supplemented by marine fish consumption, although their native producers are oleaginous microalgae. Currently, increasing demand for fish oils is insufficient to meet the entire global needs, which puts pressure on searching for the alternative solutions. One possibility may be metabolic engineering of plants with an introduced enzymatic pathway producing ω3-LC-PUFAs.
In this study we focused on the acyl-CoA:diacylglycerol acyltransferase2b (PtDGAT2b) from the diatom Phaeodactylum tricornutum, an enzyme responsible for triacylglycerol (TAG) biosynthesis via acyl-CoA-dependent pathway. Gene encoding PtDGAT2b, incorporated into TAG-deficient yeast strain H1246, was used to confirm its activity and conduct biochemical characterization. PtDGAT2b exhibited a broad acyl-CoA preference with both di-16:0-DAG and di-18:1-DAG, whereas di-18:1-DAG was favored. The highest preference for acyl donors was observed for 16:1-, 10:0- and 12:0-CoA. PtDGAT2b also very efficiently utilized CoA-conjugated ω-3 LC-PUFAs (stearidonic acid, eicosatetraenoic acid and EPA). Additionally, verification of the potential role of PtDGAT2b in planta, through its transient expression in tobacco leaves, indicated increased TAG production with its relative amount increasing to 8%. Its co-expression with the gene combinations aimed at EPA biosynthesis led to, beside elevated TAG accumulation, efficient accumulation of EPA which constituted even 25.1% of synthesized non-native fatty acids (9.2% of all fatty acids in TAG pool).
This set of experiments provides a comprehensive biochemical characterization of DGAT enzyme from marine microalgae. Additionally, this study elucidates that PtDGAT2b can be used successfully in metabolic engineering of plants designed to obtain a boosted TAG level, enriched not only in ω-3 LC-PUFAs but also in medium-chain and ω-7 fatty acids.
二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)属于ω-3 长链多不饱和脂肪酸(ω3-LC-PUFAs),是人类饮食的重要组成部分。它们主要通过食用海洋鱼类来补充,尽管它们的天然生产者是油脂微藻。目前,对鱼油的需求不断增加,但仍不足以满足全球的全部需求,这给寻找替代解决方案带来了压力。一种可能性可能是通过引入产生 ω3-LC-PUFAs 的酶促途径对植物进行代谢工程改造。
在这项研究中,我们专注于来自菱形藻的酰基辅酶 A:二酰基甘油酰基转移酶 2b(PtDGAT2b),这是一种通过酰基辅酶 A 依赖性途径负责三酰基甘油(TAG)合成的酶。将编码 PtDGAT2b 的基因整合到 TAG 缺陷酵母菌株 H1246 中,用于确认其活性并进行生化特性分析。PtDGAT2b 表现出广泛的酰基辅酶 A 偏好性,可同时使用二酰基甘油和二酰基甘油,而二酰基甘油则更受欢迎。对酰基供体的最高偏好是 16:1-、10:0-和 12:0-CoA。PtDGAT2b 还非常有效地利用 CoA 结合的 ω-3 LC-PUFAs(亚麻酸、二十碳四烯酸和 EPA)。此外,通过在烟草叶片中瞬时表达来验证 PtDGAT2b 在植物中的潜在作用,表明 TAG 产量增加,其相对含量增加到 8%。它与旨在 EPA 生物合成的基因组合的共表达导致 TAG 积累增加,同时有效积累 EPA,甚至构成合成非天然脂肪酸的 25.1%(TAG 池中的所有脂肪酸的 9.2%)。
这组实验提供了来自海洋微藻的 DGAT 酶的全面生化特性分析。此外,本研究表明,PtDGAT2b 可成功用于植物代谢工程改造,以获得更高水平的 TAG,不仅富含 ω-3 LC-PUFAs,还富含中链和 ω-7 脂肪酸。