Acute Multidisciplinary Imaging and Interventional Centre, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford NIHR Biomedical Research Centre, University of Oxford, United Kingdom.
Acute Multidisciplinary Imaging and Interventional Centre, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford NIHR Biomedical Research Centre, University of Oxford, United Kingdom.
Atherosclerosis. 2024 Nov;398:117580. doi: 10.1016/j.atherosclerosis.2024.117580. Epub 2024 May 19.
With the enormous progress in the field of cardiovascular imaging in recent years, computed tomography (CT) has become readily available to phenotype atherosclerotic coronary artery disease. New analytical methods using artificial intelligence (AI) enable the analysis of complex phenotypic information of atherosclerotic plaques. In particular, deep learning-based approaches using convolutional neural networks (CNNs) facilitate tasks such as lesion detection, segmentation, and classification. New radiotranscriptomic techniques even capture underlying bio-histochemical processes through higher-order structural analysis of voxels on CT images. In the near future, the international large-scale Oxford Risk Factors And Non-invasive Imaging (ORFAN) study will provide a powerful platform for testing and validating prognostic AI-based models. The goal is the transition of these new approaches from research settings into a clinical workflow. In this review, we present an overview of existing AI-based techniques with focus on imaging biomarkers to determine the degree of coronary inflammation, coronary plaques, and the associated risk. Further, current limitations using AI-based approaches as well as the priorities to address these challenges will be discussed. This will pave the way for an AI-enabled risk assessment tool to detect vulnerable atherosclerotic plaques and to guide treatment strategies for patients.
近年来,心血管成像领域取得了巨大进展,计算机断层扫描(CT)已广泛应用于动脉粥样硬化性冠状动脉疾病的表型分析。使用人工智能(AI)的新分析方法可以分析动脉粥样斑块的复杂表型信息。特别是,基于卷积神经网络(CNN)的深度学习方法可以促进病变检测、分割和分类等任务。新的放射转录组学技术甚至通过对 CT 图像上体素的高阶结构分析来捕获潜在的生物组织化学过程。在不久的将来,国际大规模牛津风险因素和无创成像(ORFAN)研究将为测试和验证基于预后的 AI 模型提供一个强大的平台。目标是将这些新方法从研究环境过渡到临床工作流程。在这篇综述中,我们介绍了现有的基于 AI 的技术,重点介绍了用于确定冠状动脉炎症、冠状动脉斑块程度和相关风险的成像生物标志物。此外,还讨论了当前使用基于 AI 的方法的局限性以及解决这些挑战的优先事项。这将为基于 AI 的风险评估工具铺平道路,以检测易损性动脉粥样斑块并指导患者的治疗策略。
Ther Adv Cardiovasc Dis. 2024
Int J Cardiovasc Imaging. 2020-7-2
Comput Methods Programs Biomed. 2020-11
Forensic Sci Med Pathol. 2025-7-21
Int J Cardiovasc Imaging. 2025-6-27
Eur J Clin Invest. 2025-7
Eur Heart J. 2023-10-12
Front Cardiovasc Med. 2023-2-16
Med Image Anal. 2023-2
Front Cardiovasc Med. 2022-9-6
Front Cardiovasc Med. 2022-5-12