Suppr超能文献

对葡萄糖生长的 培养物中呼吸能量偶联的复合物 I NADH 脱氢酶的贡献。

Contribution of Complex I NADH Dehydrogenase to Respiratory Energy Coupling in Glucose-Grown Cultures of .

机构信息

Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.

DSM Biotechnology Center, Delft, The Netherlands.

出版信息

Appl Environ Microbiol. 2020 Jul 20;86(15). doi: 10.1128/AEM.00678-20.

Abstract

The thermotolerant yeast (formerly ) is an industrially relevant production host that exhibits a fully respiratory sugar metabolism in aerobic batch cultures. NADH-derived electrons can enter its mitochondrial respiratory chain either via a proton-translocating complex I NADH-dehydrogenase or via three putative alternative NADH dehydrogenases. This respiratory entry point affects the amount of ATP produced per NADH/O consumed and therefore impacts the maximum yield of biomass and/or cellular products from a given amount of substrate. To investigate the physiological importance of complex I, a wild-type strain and a congenic complex I-deficient mutant were grown on glucose in aerobic batch, chemostat, and retentostat cultures in bioreactors. In batch cultures, the two strains exhibited a fully respiratory metabolism and showed the same growth rates and biomass yields, indicating that, under these conditions, the contribution of NADH oxidation via complex I was negligible. Both strains also exhibited a respiratory metabolism in glucose-limited chemostat cultures, but the complex I-deficient mutant showed considerably reduced biomass yields on substrate and oxygen, consistent with a lower efficiency of respiratory energy coupling. In glucose-limited retentostat cultures at specific growth rates down to ∼0.001 h, both strains showed high viability. Maintenance energy requirements at these extremely low growth rates were approximately 3-fold lower than estimated from faster-growing chemostat cultures, indicating a stringent-response-like behavior. Quantitative transcriptome and proteome analyses indicated condition-dependent expression patterns of complex I subunits and of alternative NADH dehydrogenases that were consistent with physiological observations. Since popular microbial cell factories have typically not been selected for efficient respiratory energy coupling, their ATP yields from sugar catabolism are often suboptimal. In aerobic industrial processes, suboptimal energy coupling results in reduced product yields on sugar, increased process costs for oxygen transfer, and volumetric productivity limitations due to limitations in gas transfer and cooling. This study provides insights into the contribution of mechanisms of respiratory energy coupling in the yeast cell factory under different growth conditions and provides a basis for rational improvement of energy coupling in yeast cell factories. Analysis of energy metabolism of at extremely low specific growth rates indicated that this yeast reduces its energy requirements for cellular maintenance under extreme energy limitation. Exploration of the mechanisms for this increased energetic efficiency may contribute to an optimization of the performance of industrial processes with slow-growing eukaryotic cell factories.

摘要

耐热酵母(以前称为)是一种具有工业相关性的生产宿主,在有氧分批培养中表现出完全的呼吸糖代谢。NADH 衍生的电子可以通过质子转运复合物 I NADH 脱氢酶或通过三个假定的替代 NADH 脱氢酶进入其线粒体呼吸链。这种呼吸进入点会影响每消耗 NADH/O 产生的 ATP 数量,因此会影响从给定数量的底物获得的生物量和/或细胞产物的最大产量。为了研究复合物 I 的生理重要性,在生物反应器中的有氧分批、恒化器和恒浊器培养物中,对野生型和同源复合物 I 缺陷突变体进行了葡萄糖培养。在分批培养中,这两个菌株表现出完全的呼吸代谢,并且表现出相同的生长速率和生物量产率,表明在这些条件下,NADH 通过复合物 I 氧化的贡献可以忽略不计。两个菌株在葡萄糖限制的恒化器培养物中也表现出呼吸代谢,但复合物 I 缺陷突变体在底物和氧气上的生物量产率明显降低,这与呼吸能量偶联效率较低一致。在特定生长速率低至约 0.001 h 的葡萄糖限制恒浊器培养物中,两个菌株的存活率都很高。在这些极低生长速率下,维持能量需求约比从生长较快的恒化器培养物中估计的低 3 倍,表明存在类似于严格反应的行为。定量转录组和蛋白质组分析表明,与生理观察一致,复合物 I 亚基和替代 NADH 脱氢酶的表达模式存在条件依赖性。由于流行的微生物细胞工厂通常没有被选择用于高效呼吸能量偶联,因此它们从糖分解代谢中产生的 ATP 产量往往不理想。在有氧工业过程中,能量偶联不佳会导致糖上的产物产率降低、氧气转移的过程成本增加以及由于气体转移和冷却限制导致的体积生产率限制。这项研究提供了在不同生长条件下酵母细胞工厂中呼吸能量偶联机制的贡献的见解,并为理性改善酵母细胞工厂中的能量偶联提供了基础。对极低比生长速率下酵母的能量代谢分析表明,在极端能量限制下,酵母会降低其细胞维持所需的能量。探索这种能量效率提高的机制可能有助于优化具有生长缓慢的真核细胞工厂的工业过程的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14b8/7376551/8cb480029f81/AEM.00678-20-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验