Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.
NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA.
Nat Chem Biol. 2022 Jan;18(1):38-46. doi: 10.1038/s41589-021-00893-5. Epub 2021 Oct 28.
Inefficient homology-directed repair (HDR) constrains CRISPR-Cas9 genome editing in organisms that preferentially employ nonhomologous end joining (NHEJ) to fix DNA double-strand breaks (DSBs). Current strategies used to alleviate NHEJ proficiency involve NHEJ disruption. To confer precision editing without NHEJ disruption, we identified the shortcomings of the conventional CRISPR platforms and developed a CRISPR platform-lowered indel nuclease system enabling accurate repair (LINEAR)-which enhanced HDR rates (to 67-100%) compared to those in previous reports using conventional platforms in four NHEJ-proficient yeasts. With NHEJ preserved, we demonstrate its ability to survey genomic landscapes, identifying loci whose spatiotemporal genomic architectures yield favorable expression dynamics for heterologous pathways. We present a case study that deploys LINEAR precision editing and NHEJ-mediated random integration to rapidly engineer and optimize a microbial factory to produce (S)-norcoclaurine. Taken together, this work demonstrates how to leverage an antagonizing pair of DNA DSB repair pathways to expand the current collection of microbial factories.
非同源末端连接(NHEJ)效率低下限制了 CRISPR-Cas9 在优先利用 NHEJ 修复 DNA 双链断裂(DSB)的生物体中的基因组编辑。目前用于减轻 NHEJ 效率的策略涉及 NHEJ 破坏。为了在不破坏 NHEJ 的情况下实现精确编辑,我们发现了传统 CRISPR 平台的缺点,并开发了一种 CRISPR 平台降低的缺失内切酶系统,实现了精确修复(LINEAR)-与使用传统平台在四个 NHEJ 有效的酵母中进行的先前报告相比,提高了 HDR 率(达到 67-100%)。在保留 NHEJ 的情况下,我们证明了它能够调查基因组景观,确定那些时空基因组结构产生有利于异源途径表达动力学的基因座。我们提出了一个案例研究,该研究利用 LINEAR 精确编辑和 NHEJ 介导的随机整合来快速工程和优化微生物工厂,以生产(S)-去甲可乐定。总之,这项工作展示了如何利用一对拮抗的 DNA DSB 修复途径来扩展当前的微生物工厂集合。