Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany.
Sci Rep. 2020 May 29;10(1):8761. doi: 10.1038/s41598-020-65380-8.
The manipulation of superparamagnetic microbeads for lab-on-a-chip applications relies on the steering of microbeads across an altering stray field landscape on top of soft magnetic parent structures. Using ab initio principles, we show three-dimensional simulations forecasting the controlled movement of microbeads. Simulated aspects of microbead behaviour include the looping and lifting of microbeads around a magnetic circular structure, the flexible bead movement along symmetrically distributed triangular structures, and the dragging of magnetic beads across an array of exchange biased magnetic microstripes. The unidirectional motion of microbeads across a string of oval elements is predicted by simulations and validated experimentally. Each of the simulations matches the experimental results, proving the robustness and accuracy of the applied numerical method. The computer experiments provide details on the particle motion not accessible by experiments. The simulation capabilities prove to be an essential part for the estimation of future lab-on-chip designs.
用于芯片实验室应用的超顺磁微球的操纵依赖于在软磁母体结构上的变化杂散场景观中引导微球。我们使用从头算原理展示了预测微球受控运动的三维模拟。模拟的微球行为包括微球在磁性圆形结构周围的循环和提升、沿着对称分布的三角形结构的灵活微球运动以及磁性微球在一系列交换偏置磁性微条上的拖拽。微球在字符串的椭圆形元素上的单向运动通过模拟进行预测并通过实验进行验证。每个模拟都与实验结果匹配,证明了所应用的数值方法的稳健性和准确性。计算机实验提供了实验无法获得的关于颗粒运动的详细信息。模拟能力被证明是未来芯片实验室设计估算的重要组成部分。