Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, USA.
Baylor College of Medicine, Houston, TX, USA.
J Diabetes Sci Technol. 2021 Jul;15(4):842-855. doi: 10.1177/1932296820922622. Epub 2020 Jun 1.
Hypoglycemia is a serious health concern in youth with type 1 diabetes (T1D). Real-time data from continuous glucose monitoring (CGM) can be used to predict hypoglycemic risk, allowing patients to take timely intervention measures.
A machine learning model is developed for probabilistic prediction of hypoglycemia (<70 mg/dL) in 30- and 60-minute time horizons based on CGM datasets obtained from 112 patients over a range of 90 days consisting of over 1.6 million CGM values under normal living conditions. A comprehensive set of features relevant for hypoglycemia are developed and a parsimonious subset with most influence on predicting hypoglycemic risk is identified. Model performance is evaluated both with and without contextual information on insulin and carbohydrate intake.
The model predicted hypoglycemia with >91% sensitivity for 30- and 60-minute prediction horizons while maintaining specificity >90%. Inclusion of insulin and carbohydrate data yielded performance improvement for 60-minute but not for 30-minute predictions. Model performance was highest for nocturnal hypoglycemia (~95% sensitivity). Shortterm (less than one hour) and medium-term (one to four hours) features for good prediction performance are identified.
Innovative feature identification facilitated high performance for hypoglycemia risk prediction in pediatric youth with T1D. Timely alerts of impending hypoglycemia may enable proactive measures to avoid severe hypoglycemia and achieve optimal glycemic control. The model will be deployed on a patient-facing smartphone application in an upcoming pilot study.
低血糖是 1 型糖尿病(T1D)青少年的严重健康问题。实时连续血糖监测(CGM)数据可用于预测低血糖风险,使患者能够及时采取干预措施。
根据 112 名患者在 90 天内获得的 CGM 数据集,开发了一种机器学习模型,用于预测 30 分钟和 60 分钟时间范围内的低血糖(<70mg/dL)。该模型考虑了与低血糖相关的一整套综合特征,并确定了对预测低血糖风险影响最大的简约子集。评估了模型在有无胰岛素和碳水化合物摄入相关信息的情况下的性能。
该模型对 30 分钟和 60 分钟预测时间窗口的低血糖预测具有>91%的敏感性,同时保持特异性>90%。纳入胰岛素和碳水化合物数据可提高 60 分钟预测的性能,但不能提高 30 分钟预测的性能。夜间低血糖(~95%的敏感性)的模型性能最高。确定了用于良好预测性能的短期(小于一小时)和中期(一到四小时)特征。
创新的特征识别有助于提高 T1D 儿科青少年低血糖风险预测的性能。即将发生低血糖的及时警报可能使患者能够采取主动措施避免严重低血糖并实现最佳血糖控制。该模型将在即将进行的一项试点研究中部署在面向患者的智能手机应用程序上。