IEEE J Biomed Health Inform. 2020 Feb;24(2):414-423. doi: 10.1109/JBHI.2019.2931842. Epub 2019 Jul 29.
For people with Type 1 diabetes (T1D), forecasting of blood glucose (BG) can be used to effectively avoid hyperglycemia, hypoglycemia and associated complications. The latest continuous glucose monitoring (CGM) technology allows people to observe glucose in real-time. However, an accurate glucose forecast remains a challenge. In this work, we introduce GluNet, a framework that leverages on a personalized deep neural network to predict the probabilistic distribution of short-term (30-60 minutes) future CGM measurements for subjects with T1D based on their historical data including glucose measurements, meal information, insulin doses, and other factors. It adopts the latest deep learning techniques consisting of four components: data pre-processing, label transform/recover, multi-layers of dilated convolution neural network (CNN), and post-processing. The method is evaluated in-silico for both adult and adolescent subjects. The results show significant improvements over existing methods in the literature through a comprehensive comparison in terms of root mean square error (RMSE) ([Formula: see text] mg/dL) with short time lag ([Formula: see text] minutes) for prediction horizons (PH) = 30 mins (minutes), and RMSE ([Formula: see text] mg/dL) with time lag ([Formula: see text] mins) for PH = 60 mins for virtual adult subjects. In addition, GluNet is also tested on two clinical data sets. Results show that it achieves an RMSE ([Formula: see text] mg/dL) with time lag ([Formula: see text] mins) for PH = 30 mins and an RMSE ([Formula: see text] mg/dL) with time lag ([Formula: see text] mins) for PH = 60 mins. These are the best reported results for glucose forecasting when compared with other methods including the neural network for predicting glucose (NNPG), the support vector regression (SVR), the latent variable with exogenous input (LVX), and the auto regression with exogenous input (ARX) algorithm.
对于 1 型糖尿病(T1D)患者,血糖(BG)预测可有效避免高血糖、低血糖及其相关并发症。最新的连续血糖监测(CGM)技术可让人们实时观察血糖。然而,准确的血糖预测仍然是一个挑战。在这项工作中,我们引入了 GluNet,这是一个利用个性化深度神经网络的框架,可根据 T1D 患者的历史数据(包括血糖测量值、进餐信息、胰岛素剂量和其他因素)预测其短期(30-60 分钟)未来 CGM 测量值的概率分布。它采用了最新的深度学习技术,包括四个组件:数据预处理、标签转换/恢复、多层扩张卷积神经网络(CNN)和后处理。该方法在虚拟成人和青少年患者中进行了模拟评估。通过在预测时间范围(PH)= 30 分钟时的短时间滞后([Formula: see text] 分钟)和 PH = 60 分钟时的时间滞后([Formula: see text] 分钟)的均方根误差(RMSE)[Formula: see text]mg/dL)进行全面比较,与文献中的现有方法相比,该方法在 RMSE 方面取得了显著提高,对于成人虚拟患者。此外,GluNet 还在两个临床数据集上进行了测试。结果表明,对于 PH = 30 分钟,它的 RMSE 为[Formula: see text]mg/dL,时间滞后为[Formula: see text]分钟,对于 PH = 60 分钟,它的 RMSE 为[Formula: see text]mg/dL,时间滞后为[Formula: see text]分钟。与包括预测血糖的神经网络(NNPG)、支持向量回归(SVR)、具有外部输入的潜在变量(LVX)和具有外部输入的自回归(ARX)算法在内的其他方法相比,这是血糖预测的最佳报告结果。