Suppr超能文献

一种使用扩展德布鲁因图对I型糖尿病患者小儿低血糖进行有效预测的强化学习方法。

A reinforcement learning approach to effective forecasting of pediatric hypoglycemia in diabetes I patients using an extended de Bruijn graph.

作者信息

Cakiroglu Mert Onur, Kurban Hasan, Aljihmani Lilia, Qaraqe Khalid, Petrovski Goran, Dalkilic Mehmet M

机构信息

Computer Science Department, Indiana University, Bloomington, IN, USA.

College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar.

出版信息

Sci Rep. 2024 Dec 28;14(1):31251. doi: 10.1038/s41598-024-82649-4.

Abstract

Pediatric diabetes I is an endemic and an especially difficult disease; indeed, at this point, there does not exist a cure, but only careful management that relies on anticipating hypoglycemia. The changing physiology of children producing unique blood glucose signatures, coupled with inconsistent activities, e.g., playing, eating, napping, makes "forecasting" elusive. While work has been done for adult diabetes I, this does not successfully translate for children. In the work presented here, we adopt a reinforcement approach by leveraging the de Bruijn graph that has had success in detecting patterns in sequences of symbols-most notably, genomics and proteomics. We translate a continuous signal of blood glucose levels into an alphabet that then can be used to build a de Bruijn, with some extensions, to determine blood glucose states. The graph allows us to "tune" its efficacy by computationally ignoring edges that provide either no information or are not related to entering a hypoglycemic episode. We can then use paths in the graph to anticipate hypoglycemia in advance of about 30 minutes sufficient for a clinical setting and additionally find actionable rules that accurate and effective. All the code developed for this study can be found at: https://github.com/KurbanIntelligenceLab/dBG-Hypoglycemia-Forecast .

摘要

小儿I型糖尿病是一种地方性疾病,且尤其难治;事实上,目前尚无治愈方法,只能通过密切监测低血糖情况进行谨慎管理。儿童不断变化的生理特征会产生独特的血糖特征,再加上活动的不规律,如玩耍、进食、小睡等,使得“预测”血糖情况变得困难。虽然针对成人I型糖尿病已有相关研究,但这些研究成果并不能成功应用于儿童。在本文所展示的研究中,我们采用了一种强化方法,利用德布鲁因图,该图在检测符号序列模式方面取得了成功——最显著的是在基因组学和蛋白质组学领域。我们将血糖水平的连续信号转换为一个字母表,然后可以利用这个字母表构建一个经过扩展的德布鲁因图,以确定血糖状态。通过在计算上忽略那些不提供任何信息或与进入低血糖发作无关的边,该图使我们能够“调整”其有效性。然后,我们可以利用图中的路径提前约30分钟预测低血糖情况,这对于临床环境来说已经足够,此外还能找到准确有效的可操作规则。本研究开发的所有代码可在以下网址找到:https://github.com/KurbanIntelligenceLab/dBG-Hypoglycemia-Forecast

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a243/11682413/647d65cd5919/41598_2024_82649_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验