Suppr超能文献

探索结构化药品标签中的新型可计算知识。

Exploring Novel Computable Knowledge in Structured Drug Product Labels.

作者信息

Malec Scott A, Boyce Richard D

机构信息

University of Pittsburgh Department of Biomedical Informatics, Pittsburgh, PA.

出版信息

AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:403-412. eCollection 2020.

Abstract

This paper introduces a database derived from Structured Product Labels (SPLs). SPLs are legally mandated snapshots containing information on all drugs released to market in the United States. Since publication is not required for pre-trial findings, we hypothesize that SPLs may contain knowledge absent in the literature, and hence "novel." SemMedDB is an existing database of computable knowledge derived from the literature. If SPL content could be similarly transformed, novel clinically relevant assertions in the SPLs could be identified through comparison with SemMedDB. After we derive a database (containing 4,297,481 assertions), we compare the extracted content with SemMedDB for recent FDA drug approvals. We find that novelty between the SPLs and the literature is nuanced, due to the redundancy of SPLs. Highlighting areas for improvement and future work, we conclude that SPLs contain a wealth of novel knowledge relevant to research and complementary to the literature.

摘要

本文介绍了一个源自结构化产品标签(SPL)的数据库。SPL是法定要求的快照,包含在美国上市的所有药物的信息。由于审前研究结果无需发表,我们推测SPL可能包含文献中没有的知识,因此具有“新颖性”。SemMedDB是一个现有的从文献中衍生出来的可计算知识数据库。如果SPL的内容能够以类似的方式进行转换,那么通过与SemMedDB进行比较,就可以识别出SPL中新颖的临床相关断言。在我们导出一个数据库(包含4,297,481个断言)之后,我们将提取的内容与SemMedDB中最近FDA批准的药物进行比较。我们发现,由于SPL的冗余性,SPL与文献之间的新颖性是细微的。我们强调了改进的领域和未来的工作,得出结论认为SPL包含了大量与研究相关的新颖知识,是对文献的补充。

相似文献

1
Exploring Novel Computable Knowledge in Structured Drug Product Labels.
AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:403-412. eCollection 2020.
2
Profiling structured product labeling with NDF-RT and RxNorm.
J Biomed Semantics. 2012 Dec 20;3(1):16. doi: 10.1186/2041-1480-3-16.
3
Extending the "web of drug identity" with knowledge extracted from United States product labels.
AMIA Jt Summits Transl Sci Proc. 2013 Mar 18;2013:64-8. eCollection 2013.
4
A dataset of 200 structured product labels annotated for adverse drug reactions.
Sci Data. 2018 Jan 30;5:180001. doi: 10.1038/sdata.2018.1.
5
Utilizing Deep Learning for Detecting Adverse Drug Events in Structured and Unstructured Regulatory Drug Data Sets.
Pharmaceut Med. 2022 Oct;36(5):307-317. doi: 10.1007/s40290-022-00434-y. Epub 2022 Jul 24.
6
Prevalence and Therapeutic Classifications of FDA-Approved Prescription Drugs With Boxed Warnings.
Ther Innov Regul Sci. 2014 Mar;48(2):165-172. doi: 10.1177/2168479013496091.
7
Dynamic enhancement of drug product labels to support drug safety, efficacy, and effectiveness.
J Biomed Semantics. 2013 Jan 26;4(1):5. doi: 10.1186/2041-1480-4-5.
9
Exploiting Literature-derived Knowledge and Semantics to Identify Potential Prostate Cancer Drugs.
Cancer Inform. 2014 Oct 14;13(Suppl 1):103-11. doi: 10.4137/CIN.S13889. eCollection 2014.

引用本文的文献

1
An Integrated Approach for Representing Knowledge on the Potential of Drugs to Cause Acute Kidney Injury.
Drug Saf. 2025 Jan;48(1):43-58. doi: 10.1007/s40264-024-01474-w. Epub 2024 Sep 26.

本文引用的文献

1
Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction in realistic settings.
BMC Bioinformatics. 2019 Dec 18;20(1):726. doi: 10.1186/s12859-019-3284-5.
2
Computational Advances in Drug Safety: Systematic and Mapping Review of Knowledge Engineering Based Approaches.
Front Pharmacol. 2019 May 17;10:415. doi: 10.3389/fphar.2019.00415. eCollection 2019.
3
Rediscovering Don Swanson: the Past, Present and Future of Literature-Based Discovery.
J Data Inf Sci. 2017 Dec;2(4):43-64. doi: 10.1515/jdis-2017-0019.
4
Informatics Support for Basic Research in Biomedicine.
ILAR J. 2017 Jul 1;58(1):80-89. doi: 10.1093/ilar/ilx004.
5
Embedding of semantic predications.
J Biomed Inform. 2017 Apr;68:150-166. doi: 10.1016/j.jbi.2017.03.003. Epub 2017 Mar 8.
7
Literature-Based Discovery of Confounding in Observational Clinical Data.
AMIA Annu Symp Proc. 2017 Feb 10;2016:1920-1929. eCollection 2016.
8
Exploiting heterogeneous publicly available data sources for drug safety surveillance: computational framework and case studies.
Expert Opin Drug Saf. 2017 Feb;16(2):113-124. doi: 10.1080/14740338.2017.1257604. Epub 2016 Dec 1.
9
Automated identification of molecular effects of drugs (AIMED).
J Am Med Inform Assoc. 2016 Jul;23(4):758-65. doi: 10.1093/jamia/ocw030. Epub 2016 Apr 23.
10
The TETRAD Project: Constraint Based Aids to Causal Model Specification.
Multivariate Behav Res. 1998 Jan 1;33(1):65-117. doi: 10.1207/s15327906mbr3301_3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验