Suppr超能文献

一个标注了 200 个结构产品标签的药物不良反应数据集。

A dataset of 200 structured product labels annotated for adverse drug reactions.

机构信息

U.S. National Library of Medicine, NIH, 8600 Rockville Pike, Bethesda, MD 20894, USA.

UT Health School of Biomedical Informatics, 7000 Fannin St., Houston, TX 77030, USA.

出版信息

Sci Data. 2018 Jan 30;5:180001. doi: 10.1038/sdata.2018.1.

Abstract

Adverse drug reactions (ADRs), unintended and sometimes dangerous effects that a drug may have, are one of the leading causes of morbidity and mortality during medical care. To date, there is no structured machine-readable authoritative source of known ADRs. The United States Food and Drug Administration (FDA) partnered with the National Library of Medicine to create a pilot dataset containing standardised information about known adverse reactions for 200 FDA-approved drugs. The Structured Product Labels (SPLs), the documents FDA uses to exchange information about drugs and other products, were manually annotated for adverse reactions at the mention level to facilitate development and evaluation of text mining tools for extraction of ADRs from all SPLs. The ADRs were then normalised to the Unified Medical Language System (UMLS) and to the Medical Dictionary for Regulatory Activities (MedDRA). We present the curation process and the structure of the publicly available database SPL-ADR-200db containing 5,098 distinct ADRs. The database is available at https://bionlp.nlm.nih.gov/tac2017adversereactions/; the code for preparing and validating the data is available at https://github.com/lhncbc/fda-ars.

摘要

药物不良反应(ADR)是指药物在使用过程中产生的非预期的、有时甚至是危险的作用,是医疗保健中发病率和死亡率的主要原因之一。迄今为止,还没有关于已知 ADR 的结构化、机器可读的权威来源。美国食品和药物管理局(FDA)与国家医学图书馆合作,创建了一个试点数据集,其中包含 200 种经 FDA 批准的药物的标准化不良反应信息。结构化产品标签(SPL)是 FDA 用于交换有关药物和其他产品信息的文件,在提及水平上对不良反应进行了手动注释,以促进开发和评估从所有 SPL 中提取 ADR 的文本挖掘工具。然后,将 ADR 标准化到统一医学语言系统(UMLS)和监管活动医学词典(MedDRA)中。我们介绍了包含 5098 个独特 ADR 的公共可用数据库 SPL-ADR-200db 的编目过程和结构。该数据库可在 https://bionlp.nlm.nih.gov/tac2017adversereactions/ 上获得;准备和验证数据的代码可在 https://github.com/lhncbc/fda-ars 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbeb/5789866/19cc01c40838/sdata20181-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验