Suppr超能文献

使用知识图谱嵌入预测多重用药副作用

Predicting Polypharmacy Side-effects Using Knowledge Graph Embeddings.

作者信息

Nováček Vít, Mohamed Sameh K

机构信息

Data Science Institute, NUI Galway.

Insight Centre for Data Analytics, NUI Galway.

出版信息

AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:449-458. eCollection 2020.

Abstract

Polypharmacy is the use of drug combinations and is commonly used for treating complex and terminal diseases. Despite its effectiveness in many cases, it poses high risks of adverse side effects. Polypharmacy side-effects occur due to unwanted interactions of combined drugs, and they can cause severe complications to patients which results in increasing the risks of morbidity and leading to new mortalities. The use of drug polypharmacy is currently in its early stages; thus, the knowledge of their probable side-effects is limited. This encouraged multiple works to investigate machine learning techniques to efficiently and reliably predict adverse effects of drug combinations. In this context, the Decagon model is known to provide state-of-the-art results. It models polypharmacy side-effect data as a knowledge graph and formulates finding possible adverse effects as a link prediction task over the knowledge graph. The link prediction is solved using an embedding model based on graph convolutions. Despite its effectiveness, the Decagon approach still suffers from a high rate of false positives. In this work, we propose a new knowledge graph embedding technique that uses multi-part embedding vectors to predict polypharmacy side-effects. Like in the Decagon model, we model polypharmacy side effects as a knowledge graph. However, we perform the link prediction task using an approach based on tensor decomposition. Our experimental evaluation shows that our approach outperforms the Decagon model with 12% and 16% margins in terms of the area under the ROC and precision recall curves, respectively.

摘要

多重用药是指使用药物组合,常用于治疗复杂和晚期疾病。尽管在许多情况下它很有效,但却带来了很高的副作用风险。多重用药的副作用是由于联合使用的药物产生了不良相互作用而发生的,它们会给患者造成严重并发症,从而增加发病风险并导致新的死亡。目前,多重用药的使用尚处于早期阶段;因此,对其可能产生的副作用的了解有限。这促使多项研究致力于探索机器学习技术,以高效、可靠地预测药物组合的不良反应。在这种背景下,Decagon模型以能提供最先进的结果而闻名。它将多重用药副作用数据建模为一个知识图谱,并将寻找可能的不良反应表述为知识图谱上的链接预测任务。链接预测通过基于图卷积的嵌入模型来解决。尽管Decagon方法很有效,但仍然存在较高的误报率。在这项工作中,我们提出了一种新的知识图谱嵌入技术,该技术使用多部分嵌入向量来预测多重用药的副作用。与Decagon模型一样,我们将多重用药副作用建模为一个知识图谱。然而,我们使用基于张量分解的方法来执行链接预测任务。我们的实验评估表明,我们的方法在ROC曲线下面积和精确召回率曲线方面分别比Decagon模型高出12%和16%。

相似文献

1
Predicting Polypharmacy Side-effects Using Knowledge Graph Embeddings.
AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:449-458. eCollection 2020.
2
Modeling polypharmacy side effects with graph convolutional networks.
Bioinformatics. 2018 Jul 1;34(13):i457-i466. doi: 10.1093/bioinformatics/bty294.
4
SimVec: predicting polypharmacy side effects for new drugs.
J Cheminform. 2022 Jul 26;14(1):49. doi: 10.1186/s13321-022-00632-5.
5
Polypharmacy side effect prediction based on semi-implicit graph variational auto-encoder.
J Bioinform Comput Biol. 2024 Aug;22(4):2450020. doi: 10.1142/S0219720024500203. Epub 2024 Sep 12.
6
A neural network-based method for polypharmacy side effects prediction.
BMC Bioinformatics. 2021 Jul 24;22(1):385. doi: 10.1186/s12859-021-04298-y.
8
Discovering protein drug targets using knowledge graph embeddings.
Bioinformatics. 2020 Jan 15;36(2):603-610. doi: 10.1093/bioinformatics/btz600.
9
Predicting Adverse Drug-Drug Interactions with Neural Embedding of Semantic Predications.
AMIA Annu Symp Proc. 2020 Mar 4;2019:992-1001. eCollection 2019.
10
Biological applications of knowledge graph embedding models.
Brief Bioinform. 2021 Mar 22;22(2):1679-1693. doi: 10.1093/bib/bbaa012.

引用本文的文献

1
Predicting phage-host interaction via hyperbolic Poincaré graph embedding and large-scale protein language technique.
iScience. 2024 Dec 19;28(1):111647. doi: 10.1016/j.isci.2024.111647. eCollection 2025 Jan 17.
2
A novel approach for target deconvolution from phenotype-based screening using knowledge graph.
Sci Rep. 2025 Jan 18;15(1):2414. doi: 10.1038/s41598-025-86166-w.
3
Fast polypharmacy side effect prediction using tensor factorization.
Bioinformatics. 2024 Nov 28;40(12). doi: 10.1093/bioinformatics/btae706.
4
Polypharmacy and precision medicine.
Camb Prism Precis Med. 2023 Mar 10;1:e22. doi: 10.1017/pcm.2023.10. eCollection 2023.
6
Multi-task learning for predicting synergistic drug combinations based on auto-encoding multi-relational graphs.
iScience. 2023 Sep 22;26(10):108020. doi: 10.1016/j.isci.2023.108020. eCollection 2023 Oct 20.
7
DPSP: a multimodal deep learning framework for polypharmacy side effects prediction.
Bioinform Adv. 2023 Aug 16;3(1):vbad110. doi: 10.1093/bioadv/vbad110. eCollection 2023.
8
Automatic knowledge extraction from Chinese electronic medical records and rheumatoid arthritis knowledge graph construction.
Quant Imaging Med Surg. 2023 Jun 1;13(6):3873-3890. doi: 10.21037/qims-22-1158. Epub 2023 May 8.
9
Towards a knowledge graph for pre-/probiotics and microbiota-gut-brain axis diseases.
Sci Rep. 2022 Nov 8;12(1):18977. doi: 10.1038/s41598-022-21735-x.
10
The potential of a data centred approach & knowledge graph data representation in chemical safety and drug design.
Comput Struct Biotechnol J. 2022 Sep 5;20:4837-4849. doi: 10.1016/j.csbj.2022.08.061. eCollection 2022.

本文引用的文献

1
Discovering protein drug targets using knowledge graph embeddings.
Bioinformatics. 2020 Jan 15;36(2):603-610. doi: 10.1093/bioinformatics/btz600.
2
Modeling polypharmacy side effects with graph convolutional networks.
Bioinformatics. 2018 Jul 1;34(13):i457-i466. doi: 10.1093/bioinformatics/bty294.
4
A unified frame of predicting side effects of drugs by using linear neighborhood similarity.
BMC Syst Biol. 2017 Dec 14;11(Suppl 6):101. doi: 10.1186/s12918-017-0477-2.
5
Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions.
Nat Biotechnol. 2017 May;35(5):463-474. doi: 10.1038/nbt.3834. Epub 2017 Mar 20.
6
Using Drug Similarities for Discovery of Possible Adverse Reactions.
AMIA Annu Symp Proc. 2017 Feb 10;2016:924-933. eCollection 2016.
7
Link prediction in drug-target interactions network using similarity indices.
BMC Bioinformatics. 2017 Jan 17;18(1):39. doi: 10.1186/s12859-017-1460-z.
8
A multiple kernel learning algorithm for drug-target interaction prediction.
BMC Bioinformatics. 2016 Jan 22;17:46. doi: 10.1186/s12859-016-0890-3.
9
STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data.
Nucleic Acids Res. 2016 Jan 4;44(D1):D380-4. doi: 10.1093/nar/gkv1277. Epub 2015 Nov 20.
10
Trends in Prescription Drug Use Among Adults in the United States From 1999-2012.
JAMA. 2015 Nov 3;314(17):1818-31. doi: 10.1001/jama.2015.13766.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验