Suppr超能文献

用于提取重症监护病房低血压管理中临床医生目标的可解释批处理逆强化学习。

Interpretable Batch IRL to Extract Clinician Goals in ICU Hypotension Management.

作者信息

Srinivasan Srivatsan, Doshi-Velez Finale

机构信息

Harvard University, Paulson School of Engineering and Applied Sciences, Cambridge, MA.

出版信息

AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:636-645. eCollection 2020.

Abstract

Exposing and understanding the motivations of clinicians is an important step for building robust assistive agents as well as improving care. In this work, we focus on understanding the motivations for clinicians managing hypotension in the ICU. We model the ICU interventions as a batch, sequential decision making problem and develop a novel interpretable batch variant of Adversarial Inverse Reinforcement Learning algorithm that not only learns rewards which induce treatment policies similar to clinical treatments, but also ensure that the learned functional form of rewards is consistent with the decision mechanisms of clinicians in the ICU. We apply our approach to understanding vasopressor and IVfluid administration in the ICU and posit that this interpretability enables inspection and validation of the rewards robustly.

摘要

揭示并理解临床医生的动机是构建强大的辅助智能体以及改善医疗护理的重要一步。在这项工作中,我们专注于理解临床医生在重症监护病房(ICU)管理低血压的动机。我们将ICU中的干预措施建模为一个批量、序列决策问题,并开发了一种新颖的可解释的批量对抗逆强化学习算法变体,该算法不仅能学习到能诱导出与临床治疗相似的治疗策略的奖励,还能确保所学习的奖励函数形式与ICU中临床医生的决策机制一致。我们将我们的方法应用于理解ICU中血管加压药和静脉输液的使用情况,并认为这种可解释性能够有力地检查和验证奖励。

相似文献

1
Interpretable Batch IRL to Extract Clinician Goals in ICU Hypotension Management.
AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:636-645. eCollection 2020.
2
First-Person Activity Forecasting from Video with Online Inverse Reinforcement Learning.
IEEE Trans Pattern Anal Mach Intell. 2020 Feb;42(2):304-317. doi: 10.1109/TPAMI.2018.2873794. Epub 2018 Oct 4.
3
An interpretable RL framework for pre-deployment modeling in ICU hypotension management.
NPJ Digit Med. 2022 Nov 18;5(1):173. doi: 10.1038/s41746-022-00708-4.
4
Using sequential patterns as features for classification models to make accurate predictions on ICU events.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:8157-60. doi: 10.1109/EMBC.2015.7320287.
5
Generating Reward Functions Using IRL Towards Individualized Cancer Screening.
Artif Intell Health (2018). 2019;11326:213-227. doi: 10.1007/978-3-030-12738-1_16. Epub 2019 Feb 21.
6
Trajectory Inspection: A Method for Iterative Clinician-Driven Design of Reinforcement Learning Studies.
AMIA Jt Summits Transl Sci Proc. 2021 May 17;2021:305-314. eCollection 2021.
7
Bridging the Gap Between Imitation Learning and Inverse Reinforcement Learning.
IEEE Trans Neural Netw Learn Syst. 2017 Aug;28(8):1814-1826. doi: 10.1109/TNNLS.2016.2543000. Epub 2016 May 4.
8
Interpretable Deep Models for ICU Outcome Prediction.
AMIA Annu Symp Proc. 2017 Feb 10;2016:371-380. eCollection 2016.
10
Oral midodrine treatment accelerates the liberation of intensive care unit patients from intravenous vasopressor infusions.
J Crit Care. 2013 Oct;28(5):756-62. doi: 10.1016/j.jcrc.2013.05.021. Epub 2013 Jul 8.

引用本文的文献

2
Trajectory Inspection: A Method for Iterative Clinician-Driven Design of Reinforcement Learning Studies.
AMIA Jt Summits Transl Sci Proc. 2021 May 17;2021:305-314. eCollection 2021.
3
Deep reinforcement learning approaches for global public health strategies for COVID-19 pandemic.
PLoS One. 2021 May 13;16(5):e0251550. doi: 10.1371/journal.pone.0251550. eCollection 2021.

本文引用的文献

1
2
Defending a mean arterial pressure in the intensive care unit: Are we there yet?
Ann Intensive Care. 2018 Dec 3;8(1):116. doi: 10.1186/s13613-018-0463-x.
3
Predicting intervention onset in the ICU with switching state space models.
AMIA Jt Summits Transl Sci Proc. 2017 Jul 26;2017:82-91. eCollection 2017.
4
MIMIC-III, a freely accessible critical care database.
Sci Data. 2016 May 24;3:160035. doi: 10.1038/sdata.2016.35.
5
Vasopressors for hypotensive shock.
Cochrane Database Syst Rev. 2016 Feb 15;2(2):CD003709. doi: 10.1002/14651858.CD003709.pub4.
6
Human-level control through deep reinforcement learning.
Nature. 2015 Feb 26;518(7540):529-33. doi: 10.1038/nature14236.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验