Suppr超能文献

一种用于重症监护病房低血压管理预部署建模的可解释强化学习框架。

An interpretable RL framework for pre-deployment modeling in ICU hypotension management.

作者信息

Zhang Kristine, Wang Henry, Du Jianzhun, Chu Brian, Arévalo Aldo Robles, Kindle Ryan, Celi Leo Anthony, Doshi-Velez Finale

机构信息

Harvard University, Cambridge, MA, USA.

IDMEC, Instituto Superior Técnico - Universidade de Lisboa, NTT DATA Portugal, Lisbon, Portugal.

出版信息

NPJ Digit Med. 2022 Nov 18;5(1):173. doi: 10.1038/s41746-022-00708-4.

Abstract

Computational methods from reinforcement learning have shown promise in inferring treatment strategies for hypotension management and other clinical decision-making challenges. Unfortunately, the resulting models are often difficult for clinicians to interpret, making clinical inspection and validation of these computationally derived strategies challenging in advance of deployment. In this work, we develop a general framework for identifying succinct sets of clinical contexts in which clinicians make very different treatment choices, tracing the effects of those choices, and inferring a set of recommendations for those specific contexts. By focusing on these few key decision points, our framework produces succinct, interpretable treatment strategies that can each be easily visualized and verified by clinical experts. This interrogation process allows clinicians to leverage the model's use of historical data in tandem with their own expertise to determine which recommendations are worth investigating further e.g. at the bedside. We demonstrate the value of this approach via application to hypotension management in the ICU, an area with critical implications for patient outcomes that lacks data-driven individualized treatment strategies; that said, our framework has broad implications on how to use computational methods to assist with decision-making challenges on a wide range of clinical domains.

摘要

强化学习中的计算方法已显示出在推断低血压管理及其他临床决策挑战的治疗策略方面的前景。不幸的是,所得模型往往让临床医生难以解释,这使得在部署之前对这些通过计算得出的策略进行临床检查和验证具有挑战性。在这项工作中,我们开发了一个通用框架,用于识别临床医生做出非常不同治疗选择的简洁临床情境集,追踪这些选择的效果,并为那些特定情境推断出一套建议。通过关注这几个关键决策点,我们的框架产生简洁、可解释的治疗策略,每个策略都能很容易地由临床专家进行可视化和验证。这种询问过程使临床医生能够将模型对历史数据的使用与其自身专业知识结合起来,以确定哪些建议值得进一步研究,例如在床边。我们通过将该方法应用于重症监护病房的低血压管理来证明其价值,这是一个对患者预后有重大影响且缺乏数据驱动的个性化治疗策略的领域;也就是说,我们的框架对于如何使用计算方法协助广泛临床领域的决策挑战具有广泛意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc71/9671896/c2630a4cfe5a/41746_2022_708_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验