Suppr超能文献

通过设计培育作物,为未来农业服务。

Breeding crops by design for future agriculture.

机构信息

Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia.

出版信息

J Zhejiang Univ Sci B. 2020 Jun;21(6):423-425. doi: 10.1631/jzus.B2010001.

Abstract

Plant breeding is both the science and art of developing elite crop cultivars by creating and reassembling desirable inherited traits for human benefit. From the bulk selection of wild plants for cultivation during early civilization to Mendelian genetics and genomics-assisted breeding in modern society, breeding methodologies have evolved over the last thousand years. In the past few decades, the "Green Revolution" through breeding of semi-dwarf wheat and rice varieties, and the use of heterosis and transgenic crops have dramatically enhanced crop productivity and helped prevent widespread famine (Hickey et al., 2019). Integration of these technologies can significantly improve breeding efficiency in the development of super crop varieties (Li et al., 2018). For example, a hybrid cotton variety CCRI63 and six related hybrid varieties account for nearly 90% of cotton production in the Yangtze River Basin (Wan et al., 2017; Wang et al., 2018). These varieties have successfully combined high yield, good quality, and biotic stress tolerance through the integration of conventional breeding, hybrid and genetically modified organism (GMO) technologies (Lu et al., 2019; Ma et al., 2019; Song et al., 2019). Unfortunately, such technology integration is not practical for most staple food crops, including rice and wheat, because of social or technical restrictions. Furthermore, plant breeding is still labor-intensive and time-consuming, and conventional breeding remains the leading approach for the release of commercial crop varieties worldwide. This is especially true for breeding cultivars and hybrids with high yield, good quality, and resistance to biotic or abiotic stresses (Liu et al., 2015; Gu et al., 2016). New germplasm, knowledge, and breeding techniques are required to breed the next generation of crop varieties.

摘要

植物育种是通过创造和重新组合人类受益的理想遗传特性来开发优良作物品种的科学和艺术。从早期文明对野生植物的大规模选择到现代社会的孟德尔遗传学和基因组辅助育种,育种方法在过去的一千年中不断发展。在过去的几十年中,通过培育半矮秆小麦和水稻品种以及利用杂种优势和转基因作物的“绿色革命”,极大地提高了作物的生产力,并有助于防止广泛的饥荒(Hickey 等人,2019)。这些技术的整合可以显著提高超级作物品种开发的育种效率(Li 等人,2018)。例如,杂交棉品种 CCRI63 和六个相关的杂交品种占长江流域棉花产量的近 90%(Wan 等人,2017;Wang 等人,2018)。这些品种通过常规育种、杂交和转基因生物(GMO)技术的整合,成功地结合了高产、优质和生物胁迫耐受性(Lu 等人,2019;Ma 等人,2019;Song 等人,2019)。不幸的是,由于社会或技术限制,这种技术整合对于大多数主要粮食作物,包括水稻和小麦,并不实用。此外,植物育种仍然是劳动密集型和耗时的,常规育种仍然是全球商业作物品种释放的主要方法。对于培育高产、优质和抗生物或非生物胁迫的品种和杂种,情况更是如此(Liu 等人,2015;Gu 等人,2016)。需要新的种质资源、知识和育种技术来培育下一代作物品种。

相似文献

1
Breeding crops by design for future agriculture.通过设计培育作物,为未来农业服务。
J Zhejiang Univ Sci B. 2020 Jun;21(6):423-425. doi: 10.1631/jzus.B2010001.
2
Enhancement of Plant Productivity in the Post-Genomics Era.后基因组时代植物生产力的提高
Curr Genomics. 2016 Aug;17(4):295-6. doi: 10.2174/138920291704160607182507.
3
Genomic resources in plant breeding for sustainable agriculture.植物育种中的基因组资源促进可持续农业发展。
J Plant Physiol. 2021 Feb;257:153351. doi: 10.1016/j.jplph.2020.153351. Epub 2020 Dec 17.
6

本文引用的文献

2
Breeding for low cadmium accumulation cereals.培育低镉积累的谷物。
J Zhejiang Univ Sci B. 2020 Jun;21(6):442-459. doi: 10.1631/jzus.B1900576.
6
Plant gene editing through de novo induction of meristems.通过从头诱导分生组织进行植物基因编辑。
Nat Biotechnol. 2020 Jan;38(1):84-89. doi: 10.1038/s41587-019-0337-2. Epub 2019 Dec 16.
7
Breeding crops to feed 10 billion.培育作物以养活 100 亿人。
Nat Biotechnol. 2019 Jul;37(7):744-754. doi: 10.1038/s41587-019-0152-9. Epub 2019 Jun 17.
8
De Novo Domestication: An Alternative Route toward New Crops for the Future.从头驯化:未来新型作物的另一种途径。
Mol Plant. 2019 May 6;12(5):615-631. doi: 10.1016/j.molp.2019.03.016. Epub 2019 Apr 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验