Suppr超能文献

李克特量表与PI-RADS v2版MRI评分系统在检测临床显著性前列腺癌方面的比较。

Comparison of Likert and PI-RADS version 2 MRI scoring systems for the detection of clinically significant prostate cancer.

作者信息

Zawaideh Jeries P, Sala Evis, Pantelidou Maria, Shaida Nadeem, Koo Brendan, Caglic Iztok, Warren Anne Y, Carmisciano Luca, Saeb-Parsy Kasra, Gnanapragasam Vincent J, Kastner Christof, Barrett Tristan

机构信息

Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK.

CamPARI Prostate Cancer Group, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK.

出版信息

Br J Radiol. 2020 Aug;93(1112):20200298. doi: 10.1259/bjr.20200298. Epub 2020 Jun 11.

Abstract

OBJECTIVE

To compare the performance of Likert and Prostate Imaging-Reporting and Data System (PI-RADS) multiparametric (mp) MRI scoring systems for detecting clinically significant prostate cancer (csPCa).

METHODS

199 biopsy-naïve males undergoing prostate mpMRI were prospectively scored with Likert and PI-RADS systems by four experienced radiologists. A binary cut-off (threshold score ≥3) was used to analyze histological results by three groups: negative, insignificant disease (Gleason 3 + 3; iPCa), and csPCa (Gleason ≥3 +4). Lesion-level results and prostate zonal location were also compared.

RESULTS

129/199 (64.8%) males underwent biopsy, 96 with Likert or PI-RADS score ≥3, and 21 with negative MRI. A further 12 patients were biopsied during follow-up (mean 507 days). Prostate cancer was diagnosed in 87/199 (43.7%) patients, 65 with (33.6%) csPCa. 30/92 (32.6%) patients with negative MRI were biopsied, with an NPV of 83.3% for cancer and 86.7% for csPCa. Likert and PI-RADS score differences were observed in 92 patients (46.2%), but only for 16 patients (8%) at threshold score ≥3. Likert scoring had higher specificity than PI-RADS (0.77 0.66), higher area under the curve (0.92 0.87, = 0.002) and higher PPV (0.66 0.58); NPV and sensitivity were the same. Likert had more five score results (58%) compared to PI-RADS (36%), but with similar csCPa detection (81.0 and 80.6% respectively). Likert demonstrated lower proportion of false positive in the predominately AFMS-involving lesions.

CONCLUSION

Likert and PI-RADS systems both demonstrate high cancer detection rates. Likert scoring had a higher AUC with moderately higher specificity and lower positive call rate and could potentially help to reduce the number of unnecessary biopsies performed.

ADVANCES IN KNOWLEDGE

This paper illustrates that the Likert scoring system has potential to help urologists reduce the number of prostate biopsies performed.

摘要

目的

比较李克特量表(Likert)和前列腺影像报告和数据系统(PI-RADS)多参数(mp)MRI评分系统在检测临床显著性前列腺癌(csPCa)方面的表现。

方法

199例未接受过活检的男性接受了前列腺mpMRI检查,由四位经验丰富的放射科医生分别使用李克特量表和PI-RADS系统进行前瞻性评分。采用二元截断值(阈值评分≥3)将组织学结果分为三组进行分析:阴性、非显著性疾病(Gleason 3+3;iPCa)和csPCa(Gleason≥3+4)。还比较了病变水平结果和前列腺分区位置。

结果

199例男性中有129例(64.8%)接受了活检,其中96例李克特量表或PI-RADS评分≥3,21例MRI结果为阴性。另外12例患者在随访期间(平均507天)接受了活检。199例患者中有87例(43.7%)被诊断为前列腺癌,其中65例(33.6%)为csPCa。92例MRI结果为阴性的患者中有30例(32.6%)接受了活检,癌症的阴性预测值为83.3%,csPCa的阴性预测值为86.7%。92例患者(46.2%)观察到李克特量表和PI-RADS评分存在差异,但在阈值评分≥3时仅16例患者(8%)存在差异。李克特量表评分的特异性高于PI-RADS(0.77对0.66),曲线下面积更大(0.92对0.87,P=0.002),阳性预测值更高(0.66对0.58);阴性预测值和敏感性相同。与PI-RADS(36%)相比,李克特量表有更多的五分结果(58%),但csPCa检测率相似(分别为81.0%和80.6%)。在主要累及腺周基质的病变中,李克特量表显示假阳性比例较低。

结论

李克特量表和PI-RADS系统均显示出较高的癌症检测率。李克特量表评分具有更高的曲线下面积,特异性略高且阳性判定率较低,可能有助于减少不必要的活检数量。

知识进展

本文表明李克特量表评分系统有可能帮助泌尿科医生减少前列腺活检的数量。

相似文献

1
Comparison of Likert and PI-RADS version 2 MRI scoring systems for the detection of clinically significant prostate cancer.
Br J Radiol. 2020 Aug;93(1112):20200298. doi: 10.1259/bjr.20200298. Epub 2020 Jun 11.
4
Predictors of prostate cancer detection in MRI PI-RADS 3 lesions - Reality of a tertiary center.
Arch Ital Urol Androl. 2023 Dec 20;95(4):11830. doi: 10.4081/aiua.2023.11830.
5
Avoiding Unnecessary Biopsy after Multiparametric Prostate MRI with VERDICT Analysis: The INNOVATE Study.
Radiology. 2022 Dec;305(3):623-630. doi: 10.1148/radiol.212536. Epub 2022 Aug 2.
6
Is Likert better than PI-RADS at predicting prostate cancer on MRI and can a mathematical algorithm achieve similar results?
Acta Radiol. 2023 Sep;64(9):2659-2666. doi: 10.1177/02841851231187135. Epub 2023 Jul 12.
9
How to make clinical decisions to avoid unnecessary prostate screening in biopsy-naïve men with PI-RADs v2 score ≤ 3?
Int J Clin Oncol. 2020 Jan;25(1):175-186. doi: 10.1007/s10147-019-01524-9. Epub 2019 Aug 31.
10
Audit of cancer yields after prostate MRI using both the PI-RADS version 2 and Likert scoring systems.
Clin Radiol. 2022 Jul;77(7):541-547. doi: 10.1016/j.crad.2022.03.004. Epub 2022 May 12.

引用本文的文献

1
Multi-attention Mechanism for Enhanced Pseudo-3D Prostate Zonal Segmentation.
J Imaging Inform Med. 2025 Feb 28. doi: 10.1007/s10278-025-01401-0.
9
Impact of MRI/US fusion-guided prostate biopsy on biopsy-naïve patients: A single urologist's experience.
BJUI Compass. 2021 May 4;3(1):19-25. doi: 10.1002/bco2.86. eCollection 2022 Jan.

本文引用的文献

3
PI-RADS version 2.1: one small step for prostate MRI.
Clin Radiol. 2019 Nov;74(11):841-852. doi: 10.1016/j.crad.2019.05.019. Epub 2019 Jun 22.
4
Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2.
Eur Urol. 2019 Sep;76(3):340-351. doi: 10.1016/j.eururo.2019.02.033. Epub 2019 Mar 18.
6
Evaluating the size criterion for PI-RADSv2 category 5 upgrade: is 15 mm the best threshold?
Abdom Radiol (NY). 2018 Dec;43(12):3436-3444. doi: 10.1007/s00261-018-1631-z.
9
Validation of the Dominant Sequence Paradigm and Role of Dynamic Contrast-enhanced Imaging in PI-RADS Version 2.
Radiology. 2017 Dec;285(3):859-869. doi: 10.1148/radiol.2017161316. Epub 2017 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验