Department of Biotechnology, The University of Tokyo, Tokyo, Japan.
Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima, Japan.
PLoS One. 2020 Jun 1;15(6):e0231513. doi: 10.1371/journal.pone.0231513. eCollection 2020.
Enzymes acting on α-L-arabinofuranosides have been extensively studied; however, the structures and functions of β-L-arabinofuranosidases are not fully understood. Three enzymes and an ABC transporter in a gene cluster of Bifidobacterium longum JCM 1217 constitute a degradation and import system of β-L-arabinooligosaccharides on plant hydroxyproline-rich glycoproteins. An extracellular β-L-arabinobiosidase (HypBA2) belonging to the glycoside hydrolase (GH) family 121 plays a key role in the degradation pathway by releasing β-1,2-linked arabinofuranose disaccharide (β-Ara2) for the specific sugar importer. Here, we present the crystal structure of the catalytic region of HypBA2 as the first three-dimensional structure of GH121 at 1.85 Å resolution. The HypBA2 structure consists of a central catalytic (α/α)6 barrel domain and two flanking (N- and C-terminal) β-sandwich domains. A pocket in the catalytic domain appears to be suitable for accommodating the β-Ara2 disaccharide. Three acidic residues Glu383, Asp515, and Glu713, located in this pocket, are completely conserved among all members of GH121; site-directed mutagenesis analysis showed that they are essential for catalytic activity. The active site of HypBA2 was compared with those of structural homologs in other GH families: GH63 α-glycosidase, GH94 chitobiose phosphorylase, GH142 β-L-arabinofuranosidase, GH78 α-L-rhamnosidase, and GH37 α,α-trehalase. Based on these analyses, we concluded that the three conserved residues are essential for catalysis and substrate binding. β-L-Arabinobiosidase genes in GH121 are mainly found in the genomes of bifidobacteria and Xanthomonas species, suggesting that the cleavage and specific import system for the β-Ara2 disaccharide on plant hydroxyproline-rich glycoproteins are shared in animal gut symbionts and plant pathogens.
作用于α-L-阿拉伯呋喃糖苷的酶已得到广泛研究;然而,β-L-阿拉伯呋喃糖苷酶的结构和功能尚未完全阐明。长双歧杆菌 JCM 1217 基因簇中的三种酶和一个 ABC 转运蛋白构成了植物羟脯氨酸丰富糖蛋白上β-L-阿拉伯寡糖的降解和导入系统。属于糖苷水解酶(GH)家族 121 的细胞外β-L-阿拉伯糖苷酶(HypBA2)在降解途径中发挥关键作用,通过释放β-1,2 连接的阿拉伯呋喃糖二糖(β-Ara2),为特定的糖转运蛋白提供作用底物。在这里,我们展示了 HypBA2 催化区域的晶体结构,这是 GH121 的第一个三维结构,分辨率为 1.85Å。HypBA2 结构由一个中央催化(α/α)6 桶结构域和两个侧翼(N-和 C-末端)β-三明治结构域组成。催化结构域中的一个口袋似乎适合容纳β-Ara2 二糖。位于该口袋中的三个酸性残基Glu383、Asp515 和 Glu713 在 GH121 的所有成员中完全保守;定点突变分析表明,它们对催化活性至关重要。HypBA2 的活性位点与其他 GH 家族的结构同源物的活性位点进行了比较:GH63α-糖苷酶、GH94 壳二糖磷酸化酶、GH142β-L-阿拉伯呋喃糖苷酶、GH78α-L-鼠李糖苷酶和 GH37α,α-海藻糖酶。基于这些分析,我们得出结论,这三个保守残基对催化和底物结合至关重要。GH121 中的β-L-阿拉伯糖苷酶基因主要存在于双歧杆菌和黄单胞菌属的基因组中,这表明植物羟脯氨酸丰富糖蛋白上β-Ara2 二糖的切割和特异性导入系统在动物肠道共生体和植物病原体中是共享的。