Department of Biotechnology, The University of Tokyo, Tokyo 113-8657, Japan.
Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan.
Biochem Soc Trans. 2021 Apr 30;49(2):563-578. doi: 10.1042/BST20200163.
Bifidobacteria have attracted significant attention because they provide health-promoting effects in the human gut. In this review, we present a current overview of the three-dimensional structures of bifidobacterial proteins involved in carbohydrate uptake, degradation, and metabolism. As predominant early colonizers of the infant's gut, distinct bifidobacterial species are equipped with a panel of transporters and enzymes specific for human milk oligosaccharides (HMOs). Interestingly, Bifidobacterium bifidum and Bifidobacterium longum possess lacto-N-biosidases with unrelated structural folds to release the disaccharide lacto-N-biose from HMOs, suggesting the convergent evolution of this activity from different ancestral proteins. The crystal structures of enzymes that confer the degradation of glycans from the mucin glycoprotein layer provide a structural basis for the utilization of this sustainable nutrient in the gastrointestinal tract. The utilization of several plant dietary oligosaccharides has been studied in detail, and the prime importance of oligosaccharide-specific ATP-binding cassette (ABC) transporters in glycan utilisations by bifidobacteria has been revealed. The structural elements underpinning the high selectivity and roles of ABC transporter binding proteins in establishing competitive growth on preferred oligosaccharides are discussed. Distinct ABC transporters are conserved across several bifidobacterial species, e.g. those targeting arabinoxylooligosaccharide and α-1,6-galactosides/glucosides. Less prevalent transporters, e.g. targeting β-mannooligosaccharides, may contribute to the metabolic specialisation within Bifidobacterium. Some bifidobacterial species have established symbiotic relationships with humans. Structural studies of carbohydrate-utilizing systems in Bifidobacterium have revealed the interesting history of molecular coevolution with the host, as highlighted by the early selection of bifidobacteria by mucin and breast milk glycans.
双歧杆菌因其在人体肠道中具有促进健康的作用而引起了广泛关注。在这篇综述中,我们介绍了参与碳水化合物摄取、降解和代谢的双歧杆菌蛋白的三维结构的最新概述。双歧杆菌作为婴儿肠道的主要早期定植菌,具有特定的转运蛋白和酶,这些蛋白和酶专门用于水解人乳寡糖(HMOs)。有趣的是,双歧双歧杆菌和长双歧杆菌具有与结构折叠无关的乳-N-双糖苷酶,可将 HMO 中的二糖乳-N-双糖释放出来,这表明该活性来自不同的祖先蛋白的趋同进化。赋予糖蛋白层中粘蛋白聚糖降解活性的酶的晶体结构为在胃肠道中利用这种可持续的营养物质提供了结构基础。几种植物膳食低聚糖的利用已被详细研究,并且发现了寡糖特异性 ATP 结合盒(ABC)转运蛋白在双歧杆菌糖利用中的重要作用。讨论了支持 ABC 转运蛋白高选择性的结构元素以及 ABC 转运蛋白结合蛋白在建立对首选寡糖的竞争生长中的作用。几种双歧杆菌物种中都保守着不同的 ABC 转运蛋白,例如靶向阿拉伯半乳寡糖和 α-1,6-半乳糖苷/葡糖苷的 ABC 转运蛋白。不太常见的转运蛋白,例如靶向 β-甘露寡糖的转运蛋白,可能有助于双歧杆菌内的代谢专业化。一些双歧杆菌物种与人类建立了共生关系。碳水化合物利用系统的结构研究揭示了与宿主分子共同进化的有趣历史,这突出体现在粘蛋白和母乳糖对双歧杆菌的早期选择上。