Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI, 53706, USA.
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
Metab Eng. 2020 Sep;61:335-343. doi: 10.1016/j.ymben.2020.05.008. Epub 2020 May 29.
Medium-chain length methyl ketones are potential blending fuels due to their cetane numbers and low melting temperatures. Biomanufacturing offers the potential to produce these molecules from renewable resources such as lignocellulosic biomass. In this work, we designed and tested metabolic pathways in Escherichia coli to specifically produce 2-heptanone, 2-nonanone and 2-undecanone. We achieved substantial production of each ketone by introducing chain-length specific acyl-ACP thioesterases, blocking the β-oxidation cycle at an advantageous reaction, and introducing active β-ketoacyl-CoA thioesterases. Using a bioprospecting approach, we identified fifteen homologs of E. coli β-ketoacyl-CoA thioesterase (FadM) and evaluated the in vivo activity of each against various chain length substrates. The FadM variant from Providencia sneebia produced the most 2-heptanone, 2-nonanone, and 2-undecanone, suggesting it has the highest activity on the corresponding β-ketoacyl-CoA substrates. We tested enzyme variants, including acyl-CoA oxidases, thiolases, and bi-functional 3-hydroxyacyl-CoA dehydratases to maximize conversion of fatty acids to β-keto acyl-CoAs for 2-heptanone, 2-nonanone, and 2-undecanone production. In order to address the issue of product loss during fermentation, we applied a 20% (v/v) dodecane layer in the bioreactor and built an external water cooling condenser connecting to the bioreactor heat-transferring condenser coupling to the condenser. Using these modifications, we were able to generate up to 4.4 g/L total medium-chain length methyl ketones.
中链长度甲基酮由于其十六烷值和低熔点而成为有潜力的混合燃料。生物制造为从可再生资源如木质纤维素生物质生产这些分子提供了潜力。在这项工作中,我们设计并测试了大肠杆菌中的代谢途径,以专门生产 2-庚酮、2-壬酮和 2-十一烷酮。通过引入链长特异性酰基辅酶 A 硫酯酶、在有利的反应处阻断β-氧化循环以及引入活性β-酮酰基辅酶 A 硫酯酶,我们实现了每种酮的大量生产。我们采用生物勘探方法鉴定了十五种大肠杆菌β-酮酰基辅酶 A 硫酯酶(FadM)的同源物,并评估了每种同源物对各种链长底物的体内活性。来自 Providencia sneebia 的 FadM 变体产生了最多的 2-庚酮、2-壬酮和 2-十一烷酮,表明它对相应的β-酮酰基辅酶 A 底物具有最高的活性。我们测试了酶变体,包括酰基辅酶 A 氧化酶、硫酯酶和双功能 3-羟基酰基辅酶 A 脱水酶,以最大限度地将脂肪酸转化为β-酮酰基辅酶 A,用于生产 2-庚酮、2-壬酮和 2-十一烷酮。为了解决发酵过程中产物损失的问题,我们在生物反应器中应用了 20%(v/v)的十二烷层,并构建了外部水冷冷凝器,连接到生物反应器热传递冷凝器,与冷凝器耦合。使用这些改进措施,我们能够生成高达 4.4 g/L 的总中链长度甲基酮。