Suppr超能文献

基于神经网络的二维电阻抗断层成像有监督下降法。

Neural network-based supervised descent method for 2D electrical impedance tomography.

机构信息

State Key Laboratory on Microwave and Digital Communications, Beijing National Research Center for Information Science and Technology (BNRist), Department of Electronic Engineering, Tsinghua University, Beijing 100084, People's Republic of China.

出版信息

Physiol Meas. 2020 Aug 11;41(7):074003. doi: 10.1088/1361-6579/ab9871.

Abstract

OBJECTIVE

In this work, we study the application of the neural network-based supervised descent method (NN-SDM) for 2D electrical impedance tomography.

APPROACH

The NN-SDM contains two stages: offline training and online prediction. In the offline stage, neural networks are iteratively applied to learn a sequence of descent directions for minimizing the objective function, where the training data set is generated in advance according to prior information or historical data. In the online stage, the trained neural networks are directly used to predict the descent directions.

MAIN RESULTS

Numerical and experimental results are reported to assess the efficiency and accuracy of the NN-SDM for both model-based and pixel-based inversions. In addition, the performance of the NN-SDM is compared with the linear SDM (LSDM), an end-to-end neural network (E2E-NN) and the Gauss-Newton (GN) method. The results demonstrate that the NN-SDM achieves faster convergence than the LSDM and GN method, and achieves a stronger generalization ability than the E2E-NN.

SIGNIFICANCE

The NN-SDM combines the strong non-linear fitting ability of the neural network and good generalization capability of the supervised descent method (SDM), which also provides good flexibility to incorporate prior information and accelerates the convergence of iteration.

摘要

目的

在这项工作中,我们研究了基于神经网络的有监督下降法(NN-SDM)在二维电阻抗断层成像中的应用。

方法

NN-SDM 包含两个阶段:离线训练和在线预测。在离线阶段,神经网络被迭代应用以学习一系列最小化目标函数的下降方向,其中训练数据集根据先验信息或历史数据预先生成。在在线阶段,训练好的神经网络直接用于预测下降方向。

主要结果

报告了数值和实验结果,以评估 NN-SDM 在基于模型和基于像素的反演中的效率和准确性。此外,还将 NN-SDM 的性能与线性 SDM(LSDM)、端到端神经网络(E2E-NN)和高斯牛顿(GN)方法进行了比较。结果表明,NN-SDM 比 LSDM 和 GN 方法收敛更快,比 E2E-NN 具有更强的泛化能力。

意义

NN-SDM 结合了神经网络的强大非线性拟合能力和有监督下降法(SDM)的良好泛化能力,还提供了很好的灵活性来结合先验信息,并加速迭代的收敛。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验