Suppr超能文献

用于非线性逆问题中基于模型学习的图卷积网络

Graph Convolutional Networks for Model-Based Learning in Nonlinear Inverse Problems.

作者信息

Herzberg William, Rowe Daniel B, Hauptmann Andreas, Hamilton Sarah J

机构信息

Department of Mathematical and Statistical Sciences; Marquette University, Milwaukee, WI 53233 USA.

Research Unit of Mathematical Sciences; University of Oulu, Oulu, Finland and with the Department of Computer Science; University College London, London, United Kingdom.

出版信息

IEEE Trans Comput Imaging. 2021;7:1341-1353. doi: 10.1109/tci.2021.3132190. Epub 2021 Dec 2.

Abstract

The majority of model-based learned image reconstruction methods in medical imaging have been limited to uniform domains, such as pixelated images. If the underlying model is solved on nonuniform meshes, arising from a finite element method typical for nonlinear inverse problems, interpolation and embeddings are needed. To overcome this, we present a flexible framework to extend model-based learning directly to nonuniform meshes, by interpreting the mesh as a graph and formulating our network architectures using graph convolutional neural networks. This gives rise to the proposed iterative Graph Convolutional Newton-type Method (GCNM), which includes the forward model in the solution of the inverse problem, while all updates are directly computed by the network on the problem specific mesh. We present results for Electrical Impedance Tomography, a severely ill-posed nonlinear inverse problem that is frequently solved via optimization-based methods, where the forward problem is solved by finite element methods. Results for absolute EIT imaging are compared to standard iterative methods as well as a graph residual network. We show that the GCNM has good generalizability to different domain shapes and meshes, out of distribution data as well as experimental data, from purely simulated training data and without transfer training.

摘要

医学成像中大多数基于模型的学习图像重建方法都局限于均匀域,比如像素化图像。如果基础模型是在非均匀网格上求解,这源于非线性逆问题典型的有限元方法,那么就需要进行插值和嵌入操作。为克服这一问题,我们提出了一个灵活的框架,通过将网格解释为图并使用图卷积神经网络来制定我们的网络架构,从而将基于模型的学习直接扩展到非均匀网格。这就产生了所提出的迭代图卷积牛顿型方法(GCNM),该方法在逆问题的求解中包含了正向模型,而所有更新都是由网络直接在特定问题的网格上计算得出的。我们展示了电阻抗断层成像的结果,这是一个严重不适定的非线性逆问题,通常通过基于优化的方法来求解,其中正向问题通过有限元方法求解。将绝对电阻抗断层成像的结果与标准迭代方法以及图残差网络进行了比较。我们表明,GCNM对不同的域形状和网格、分布外数据以及实验数据具有良好的通用性,这些数据来自纯模拟训练数据且无需迁移训练。

相似文献

5
EIT Imaging Regularization Based on Spectral Graph Wavelets.基于谱图小波的 EIT 图像正则化。
IEEE Trans Med Imaging. 2017 Sep;36(9):1832-1844. doi: 10.1109/TMI.2017.2716825. Epub 2017 Jun 16.

引用本文的文献

6
Advances of deep learning in electrical impedance tomography image reconstruction.深度学习在电阻抗断层成像图像重建中的进展
Front Bioeng Biotechnol. 2022 Dec 14;10:1019531. doi: 10.3389/fbioe.2022.1019531. eCollection 2022.

本文引用的文献

2
Multi-Scale Learned Iterative Reconstruction.多尺度学习迭代重建
IEEE Trans Comput Imaging. 2020;6:843-856. doi: 10.1109/TCI.2020.2990299. Epub 2020 Apr 27.
3
The D-bar method for electrical impedance tomography-demystified.电阻抗断层成像的D-bar方法揭秘
Inverse Probl. 2020 Sep;36(9). doi: 10.1088/1361-6420/aba2f5. Epub 2020 Aug 31.
5
Shape Reconstruction Using Boolean Operations in Electrical Impedance Tomography.基于布尔运算的电阻抗断层成像中的形状重建。
IEEE Trans Med Imaging. 2020 Sep;39(9):2954-2964. doi: 10.1109/TMI.2020.2983055. Epub 2020 Mar 24.
7
Dominant-Current Deep Learning Scheme for Electrical Impedance Tomography.主导电流深度学习方案在电阻抗断层成像中的应用。
IEEE Trans Biomed Eng. 2019 Sep;66(9):2546-2555. doi: 10.1109/TBME.2019.2891676. Epub 2019 Jan 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验