Tahir Jibran, Dijkwel Paul
Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand.
Funct Plant Biol. 2016 Apr;43(4):307-323. doi: 10.1071/FP15272.
Cysteine is required for the synthesis of proteins and metabolites, and is therefore an indispensable compound for growth and development. The β-substituting alanine synthase (BSAS) gene family encodes enzymes known as O-acetylserine thiol lyases (OASTLs), which carry out cysteine biosynthesis in plants. The functions of the BSAS isoforms have been reported to be crucial in assimilation of S and cysteine biosynthesis, and homeostasis in plants. In this review we explore the functional variation in this classic pyridoxal-phosphate-dependent enzyme family of BSAS isoforms. We discuss how specialisation and divergence in BSAS catalytic activities makes a more dynamic set of biological routers that integrate cysteine metabolism and abiotic and biotic stress signalling in Arabidopsis thaliana (L.) Heynh. and also other species. Our review presents a universal scenario in which enzymes modulating cysteine metabolism promote survival and fitness of the species by counteracting internal and external stress factors.
半胱氨酸是蛋白质和代谢产物合成所必需的,因此是生长发育不可或缺的化合物。β-取代丙氨酸合酶(BSAS)基因家族编码的酶被称为O-乙酰丝氨酸硫解酶(OASTLs),它们在植物中进行半胱氨酸的生物合成。据报道,BSAS亚型的功能在植物的硫同化、半胱氨酸生物合成以及体内平衡中至关重要。在本综述中,我们探讨了这个经典的依赖磷酸吡哆醛的BSAS亚型酶家族的功能变异。我们讨论了BSAS催化活性的特化和分化如何形成一组更具动态性的生物路径,这些路径在拟南芥以及其他物种中整合了半胱氨酸代谢与非生物和生物胁迫信号传导。我们的综述呈现了一种普遍情况,即调节半胱氨酸代谢的酶通过对抗内部和外部胁迫因素来促进物种的生存和适应性。