Ferreira Daniela S, Marques Alexandra P, Reis Rui L, Azevedo Helena S
3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal.
Biomater Sci. 2013 Sep 30;1(9):952-964. doi: 10.1039/c3bm60019j. Epub 2013 Jun 6.
Self-assembling bioactive membranes, incorporating hyaluronan, a structural component of the skin extracellular matrix (ECM), and peptide amphiphiles presenting biochemical signals, are proposed in this work for recapitulating some aspects of the skin tissue microenvironment. In the herein presented strategy, the availability of cell-adhesion ligands (0-50% RGDS epitope) within 2D membranes is controlled aiming at mastering the adhesion of human dermal fibroblasts under serum-free culture conditions. The membranes were characterized with respect to their microstructure, by scanning electron microscopy (SEM), epitope distribution, degradability and cell behavior, regarding adhesion, proliferation and cytoskeleton organization. SEM of the membrane surface showed a network of nanofibers that are remarkably reminiscent of the filamentous structure found in the ECM. Confocal microscopy images, using a fluorescently labeled RGDS-peptide, showed that the RGDS signal is uniformly distributed on the membranes. Degradation studies indicated that the membranes are susceptible to enzymatic degradation by hyaluronidase. In the presence of the enzyme at physiological concentration, the membranes degrade gradually over time. When grown on membranes with the cell recognition epitope RGDS, fibroblasts had spread out and elongated, exhibiting extended filopodia interacting with fibrillar structure of the membrane surface, thus showing improved adhesion to the substrate. This study demonstrates the positive effect of the RGDS epitope, presented on a self-assembled membrane, in promoting cell-matrix interactions.
本研究提出了一种自组装生物活性膜,其包含透明质酸(皮肤细胞外基质(ECM)的一种结构成分)和呈现生化信号的肽两亲分子,用于重现皮肤组织微环境的某些方面。在本文提出的策略中,二维膜内细胞黏附配体(0 - 50% RGDS表位)的可用性受到控制,旨在掌握无血清培养条件下人真皮成纤维细胞的黏附情况。通过扫描电子显微镜(SEM)对膜的微观结构、表位分布、降解性以及细胞行为(包括黏附、增殖和细胞骨架组织)进行了表征。膜表面的SEM显示出纳米纤维网络,这与ECM中发现的丝状结构非常相似。使用荧光标记的RGDS肽的共聚焦显微镜图像显示,RGDS信号均匀分布在膜上。降解研究表明,这些膜易受透明质酸酶的酶促降解。在生理浓度的酶存在下,膜会随着时间逐渐降解。当成纤维细胞在具有细胞识别表位RGDS的膜上生长时,它们会铺展并伸长,表现出与膜表面纤维状结构相互作用的延伸丝状伪足,从而显示出对底物的黏附改善。这项研究证明了自组装膜上呈现的RGDS表位在促进细胞 - 基质相互作用方面的积极作用。