Suppr超能文献

用于高效太阳能水分解的分子串联电池。

A molecular tandem cell for efficient solar water splitting.

机构信息

Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, 315201 Ningbo, Zhejiang, China;

Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315336 Ningbo, Zhejiang, China.

出版信息

Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13256-13260. doi: 10.1073/pnas.2001753117. Epub 2020 Jun 1.

Abstract

Artificial photosynthesis provides a way to store solar energy in chemical bonds. Achieving water splitting without an applied external potential bias provides the key to artificial photosynthetic devices. We describe here a tandem photoelectrochemical cell design that combines a dye-sensitized photoelectrosynthesis cell (DSPEC) and an organic solar cell (OSC) in a photoanode for water oxidation. When combined with a Pt electrode for H evolution, the electrode becomes part of a combined electrochemical cell for water splitting, 2HO → O + 2H, by increasing the voltage of the photoanode sufficiently to drive bias-free reduction of H to H The combined electrode gave a 1.5% solar conversion efficiency for water splitting with no external applied bias, providing a mimic for the tandem cell configuration of PSII in natural photosynthesis. The electrode provided sustained water splitting in the molecular photoelectrode with sustained photocurrent densities of 1.24 mA/cm for 1 h under 1-sun illumination with no applied bias.

摘要

人工光合作用提供了一种将太阳能储存在化学键中的方法。实现无外加外部电势偏置的水分解是人工光合器件的关键。我们在这里描述了一种串联光电化学电池设计,该设计将染料敏化光电合成电池(DSPEC)和有机太阳能电池(OSC)结合在光电阳极中以进行水氧化。当与 Pt 电极结合用于 H 演化时,该电极通过将光电阳极的电压增加到足以驱动无偏置 H 还原的程度,成为用于水分解的组合电化学电池的一部分,2HO → O + 2H,组合电极在没有外加偏置的情况下对水分解的太阳能转换效率为 1.5%,为天然光合作用中 PSII 的串联电池结构提供了模拟。该电极在分子光电电极中提供了持续的水分解,在 1 太阳光照下,没有外加偏置,持续的光电流密度为 1.24 mA/cm,持续 1 小时。

相似文献

1
A molecular tandem cell for efficient solar water splitting.用于高效太阳能水分解的分子串联电池。
Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13256-13260. doi: 10.1073/pnas.2001753117. Epub 2020 Jun 1.
3
Dye-sensitized photoelectrochemical water oxidation through a buried junction.通过埋层结实现染料敏化光电化学水氧化。
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):6946-6951. doi: 10.1073/pnas.1804728115. Epub 2018 Jun 18.
4
Solar water splitting in a molecular photoelectrochemical cell.分子光电化学池中的太阳能分解水。
Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20008-13. doi: 10.1073/pnas.1319628110. Epub 2013 Nov 25.
10
Plasmon-enhanced light-driven water oxidation by a dye-sensitized photoanode.染料敏化光阳极促进的等离子体增强光驱动水氧化。
Proc Natl Acad Sci U S A. 2017 Sep 12;114(37):9809-9813. doi: 10.1073/pnas.1708336114. Epub 2017 Aug 28.

引用本文的文献

1
The principles, design and applications of fused-ring electron acceptors.稠环电子受体的原理、设计与应用。
Nat Rev Chem. 2022 Sep;6(9):614-634. doi: 10.1038/s41570-022-00409-2. Epub 2022 Aug 1.
2
Polymer Photoelectrodes for Solar Fuel Production: Progress and Challenges.用于太阳能燃料生产的聚合物光电极:进展与挑战
Chem Rev. 2022 Jul 13;122(13):11778-11829. doi: 10.1021/acs.chemrev.1c00971. Epub 2022 Jun 14.
5
Dye-sensitized solar cells strike back.染料敏化太阳能电池卷土重来。
Chem Soc Rev. 2021 Nov 15;50(22):12450-12550. doi: 10.1039/d0cs01336f.

本文引用的文献

1
Ternary organic solar cells offer 14% power conversion efficiency.三元有机太阳能电池的功率转换效率为14%。
Sci Bull (Beijing). 2017 Dec 15;62(23):1562-1564. doi: 10.1016/j.scib.2017.11.003. Epub 2017 Nov 13.
2
Addressing the challenge of carbon-free energy.解决无碳能源的挑战。
Proc Natl Acad Sci U S A. 2020 Jun 9;117(23):12543-12549. doi: 10.1073/pnas.1821674116. Epub 2019 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验