BioSystems and Bioprocessing Engineering, Luxembourg Institute of Science and Technology, Rue du Brill 41, L-4422, Belvaux, Luxembourg.
Evolutionary Biology and Ecology, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, 1050, Brussels, Belgium.
Commun Biol. 2020 Jun 1;3(1):275. doi: 10.1038/s42003-020-1004-3.
Miscanthus sp. biomass could satisfy future biorefinery value chains. However, its use is largely untapped due to high recalcitrance. The termite and its gut microbiome are considered the most efficient lignocellulose degrading system in nature. Here, we investigate at holobiont level the dynamic adaptation of Cortaritermes sp. to imposed Miscanthus diet, with a long-term objective of overcoming lignocellulose recalcitrance. We use an integrative omics approach combined with enzymatic characterisation of carbohydrate active enzymes from termite gut Fibrobacteres and Spirochaetae. Modified gene expression profiles of gut bacteria suggest a shift towards utilisation of cellulose and arabinoxylan, two main components of Miscanthus lignocellulose. Low identity of reconstructed microbial genomes to closely related species supports the hypothesis of a strong phylogenetic relationship between host and its gut microbiome. This study provides a framework for better understanding the complex lignocellulose degradation by the higher termite gut system and paves a road towards its future bioprospecting.
芒属植物生物质可以满足未来生物炼制产业链的需求。然而,由于其高抗逆性,其用途在很大程度上尚未得到开发。白蚁及其肠道微生物群被认为是自然界中最有效的木质纤维素降解系统。在这里,我们在整体生物群水平上研究了 Cortaritermes sp. 对强加的芒属植物饮食的动态适应,长期目标是克服木质纤维素的抗逆性。我们使用了一种综合的组学方法,并结合了白蚁肠道纤维杆菌和螺旋体碳水化合物活性酶的酶学特性。肠道细菌的改良基因表达谱表明,它们更倾向于利用纤维素和阿拉伯木聚糖,这是芒属植物木质纤维素的两个主要成分。重建的微生物基因组与密切相关的物种的低同一性支持了宿主与其肠道微生物群之间存在强烈的系统发育关系的假设。这项研究为更好地理解高等白蚁肠道系统对复杂木质纤维素的降解提供了框架,并为其未来的生物勘探铺平了道路。