Department of Microbiology, The Ohio State University, Columbus, OH, USA.
Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway.
Nat Microbiol. 2018 Nov;3(11):1274-1284. doi: 10.1038/s41564-018-0225-4. Epub 2018 Oct 24.
Because of their agricultural value, there is a great body of research dedicated to understanding the microorganisms responsible for rumen carbon degradation. However, we lack a holistic view of the microbial food web responsible for carbon processing in this ecosystem. Here, we sampled rumen-fistulated moose, allowing access to rumen microbial communities actively degrading woody plant biomass in real time. We resolved 1,193 viral contigs and 77 unique, near-complete microbial metagenome-assembled genomes, many of which lacked previous metabolic insights. Plant-derived metabolites were measured with NMR and carbohydrate microarrays to quantify the carbon nutrient landscape. Network analyses directly linked measured metabolites to expressed proteins from these unique metagenome-assembled genomes, revealing a genome-resolved three-tiered carbohydrate-fuelled trophic system. This provided a glimpse into microbial specialization into functional guilds defined by specific metabolites. To validate our proteomic inferences, the catalytic activity of a polysaccharide utilization locus from a highly connected metabolic hub genome was confirmed using heterologous gene expression. Viral detected proteins and linkages to microbial hosts demonstrated that phage are active controllers of rumen ecosystem function. Our findings elucidate the microbial and viral members, as well as their metabolic interdependencies, that support in situ carbon degradation in the rumen ecosystem.
由于其农业价值,有大量的研究致力于了解负责反刍碳降解的微生物。然而,我们缺乏对负责该生态系统中碳处理的微生物食物网的整体认识。在这里,我们对瘤胃有瘘管的驼鹿进行了采样,允许实时访问积极降解木质植物生物质的瘤胃微生物群落。我们解析了 1193 个病毒连续序列和 77 个独特的、近乎完整的微生物宏基因组组装基因组,其中许多缺乏先前的代谢见解。使用 NMR 和碳水化合物微阵列测量植物衍生代谢物,以定量碳营养景观。网络分析将测量的代谢物直接与这些独特的宏基因组组装基因组中表达的蛋白质联系起来,揭示了一个由碳水化合物驱动的具有三个层次的分级营养系统。这让我们对微生物的专业化有了一定的了解,这些微生物根据特定的代谢物分为特定的功能群。为了验证我们的蛋白质组学推论,使用异源基因表达证实了来自高度连接代谢枢纽基因组的多糖利用基因座的催化活性。病毒检测到的蛋白质及其与微生物宿主的联系表明,噬菌体是反刍动物生态系统功能的积极控制器。我们的研究结果阐明了支持瘤胃生态系统中原位碳降解的微生物和病毒成员及其代谢相互依存关系。