Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.
School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland.
J Neurotrauma. 2020 Dec 15;37(24):2709-2717. doi: 10.1089/neu.2020.7139. Epub 2020 Jul 20.
Traumatic brain injury (TBI) patients are reported to experience long-term sensorimotor dysfunction, with gait deficits evident up to 2 years after the initial brain trauma. Experimental TBI including rodent models of penetrating ballistic-like brain injury and severe controlled cortical impact (CCI) can induce impairments in static and dynamic gait parameters. It is reported that the majority of deficits in gait-related parameters occur during the acute phase post-injury, as functional outcomes return toward baseline levels at chronic time points. In the present study, we carried out a longitudinal analysis of static, temporal and dynamic gait patterns following moderate-level CCI in adult male C57Bl/6J mice using the automated gait analysis apparatus, CatWalk. For comparison, we also performed longitudinal assessment of fine-motor coordination and function in CCI mice using more traditional sensorimotor behavioral tasks such as the beamwalk and accelerating rotarod tasks. We determined that longitudinal CatWalk analysis did not detect TBI-induced deficits in static, temporal, or dynamic gait parameters at acute or chronic time points. In contrast, the rotarod and beamwalk tasks showed that CCI mice had significant motor function impairments as demonstrated by deficits in balance and fine-motor coordination through 28 days post-injury. Stereological analysis confirmed that CCI produced a significant lesion in the parietal cortex at 28 days post-injury. Overall, these findings demonstrate that CatWalk analysis of gait parameters is not useful for assessment of long-term sensorimotor dysfunction after CCI, and that more traditional neurobehavioral tests should be used to quantify acute and chronic deficits in sensorimotor function.
创伤性脑损伤 (TBI) 患者报告长期存在感觉运动功能障碍,在初始脑外伤后 2 年内明显存在步态缺陷。实验性 TBI 包括啮齿动物穿透性弹道样脑损伤模型和严重控制性皮质撞击 (CCI),可导致静态和动态步态参数受损。据报道,大多数步态相关参数的缺陷发生在损伤后的急性期,因为功能结果在慢性时间点恢复到基线水平。在本研究中,我们使用自动步态分析仪器 CatWalk 对成年雄性 C57Bl/6J 小鼠中度 CCI 后的静态、时间和动态步态模式进行了纵向分析。为了比较,我们还使用更传统的感觉运动行为任务(如平衡木和加速转棒任务)对 CCI 小鼠的精细运动协调和功能进行了纵向评估。我们确定,纵向 CatWalk 分析在急性或慢性时间点均未检测到 TBI 诱导的静态、时间或动态步态参数缺陷。相比之下,旋转棒和平衡木任务表明,CCI 小鼠在平衡和精细运动协调方面存在缺陷,导致运动功能障碍,直至损伤后 28 天。体视学分析证实,CCI 在损伤后 28 天导致顶叶皮层出现明显的损伤。总体而言,这些发现表明,CatWalk 步态参数分析不适用于评估 CCI 后长期感觉运动功能障碍,应使用更传统的神经行为测试来量化感觉运动功能的急性和慢性缺陷。