Suppr超能文献

细胞中单颗粒的超分辨率表面增强拉曼散射成像。

Super-resolution Surface-Enhanced Raman Scattering Imaging of Single Particles in Cells.

机构信息

Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.

出版信息

Anal Chem. 2020 Jul 7;92(13):9389-9398. doi: 10.1021/acs.analchem.0c01864. Epub 2020 Jun 16.

Abstract

The ability to locate and identify molecular interactions in cells has significant importance for understanding protein function and molecular biology. Functionalized metallic nanoparticles have been used as probes for protein tracking and drug delivery because of their ability to carry therapeutic agents and readily functionalized surfaces. In this work, we present a super-resolution surface-enhanced Raman scattering (SERS) approach for imaging and tracking membrane receptors interacting with peptide-functionalized gold nanostars (AuNS). The αβ integrin receptors in colon cancer cells are successfully targeted and imaged using AuNS with the high-affinity amino acid sequence arginine-glycine-aspartic acid-phenylalanine-cysteine (RGDFC) attached. The RGDFC peptide interaction with the integrin receptor provides a bright and fluctuating SERS signal that can be analyzed with localization microscopy algorithms. Additionally, the observed SERS spectrum is used to confirm protein-peptide interaction. Experiments with functionalized and bare AuNS illustrate specific and nonspecific binding events. Specific binding is monitored with a localization precision of ∼6 nm. The observed spatial resolution is associated with tight binding, which was confirmed by the slower diffusion coefficient measured from 4.4 × 10 cm/s for the AuNS-RGDFC compared to 7.8 × 10 cm/s for the bare AuNS. Super-resolution SERS images at different focal planes show evidence of internalized particles and suggest insights into protein orientation on the surface of cells. Our work demonstrates super-resolution SERS imaging to probe membrane receptor interactions in cells, providing chemical information and spatial resolution with potential for diverse applications in life science and biomedicine.

摘要

定位和识别细胞内分子相互作用的能力对于理解蛋白质功能和分子生物学具有重要意义。功能化金属纳米粒子因其携带治疗剂和易于功能化表面的能力而被用作蛋白质跟踪和药物输送的探针。在这项工作中,我们提出了一种用于成像和跟踪与肽功能化金纳米星(AuNS)相互作用的膜受体的超分辨率表面增强拉曼散射(SERS)方法。使用附着有高亲和力氨基酸序列精氨酸-甘氨酸-天冬氨酸-苯丙氨酸-半胱氨酸(RGDFC)的 AuNS 成功靶向和成像结肠癌细胞中的αβ整合素受体。RGDFC 肽与整合素受体的相互作用提供了一个明亮且波动的 SERS 信号,可以用定位显微镜算法进行分析。此外,观察到的 SERS 光谱用于确认蛋白质-肽相互作用。功能化和裸 AuNS 的实验说明了特异性和非特异性结合事件。通过本地化精度约为 6nm 的方法监测特异性结合。观察到的空间分辨率与紧密结合有关,这通过从 AuNS-RGDFC 测量的较慢扩散系数(4.4×10cm/s)与裸 AuNS(7.8×10cm/s)相比得到证实。不同焦平面的超分辨率 SERS 图像显示了内化颗粒的证据,并为细胞表面上的蛋白质取向提供了见解。我们的工作证明了超分辨率 SERS 成像可用于探测细胞中的膜受体相互作用,提供了化学信息和空间分辨率,具有在生命科学和生物医学中应用的潜力。

相似文献

1
Super-resolution Surface-Enhanced Raman Scattering Imaging of Single Particles in Cells.
Anal Chem. 2020 Jul 7;92(13):9389-9398. doi: 10.1021/acs.analchem.0c01864. Epub 2020 Jun 16.
2
Protein corona-resistant SERS tags for live cell detection of integrin receptors.
Analyst. 2019 Sep 9;144(18):5538-5546. doi: 10.1039/c9an01056d.
3
Probing Membrane Receptor-Ligand Specificity with Surface- and Tip- Enhanced Raman Scattering.
Anal Chem. 2017 Sep 5;89(17):9091-9099. doi: 10.1021/acs.analchem.7b01796. Epub 2017 Aug 22.
4
Selective Detection of RGD-Integrin Binding in Cancer Cells Using Tip Enhanced Raman Scattering Microscopy.
Anal Chem. 2016 Jun 21;88(12):6547-53. doi: 10.1021/acs.analchem.6b01344. Epub 2016 May 27.
5
TERS detection of αVβ3 integrins in intact cell membranes.
Chemphyschem. 2014 Dec 15;15(18):3944-9. doi: 10.1002/cphc.201402466. Epub 2014 Sep 11.
6
Surface-enhanced Raman scattering imaging using noble metal nanoparticles.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013 Mar-Apr;5(2):180-9. doi: 10.1002/wnan.1208. Epub 2013 Jan 17.
7
Non-invasive Imaging of Cancer Using Surface-Enhanced Spatially Offset Raman Spectroscopy (SESORS).
Theranostics. 2019 Aug 13;9(20):5899-5913. doi: 10.7150/thno.36321. eCollection 2019.

引用本文的文献

1
Pangolin-type fluorescence imaging of circulating tumor cell based on functionalized 2D nanomaterial.
Mikrochim Acta. 2025 Jul 28;192(8):528. doi: 10.1007/s00604-025-07406-4.
3
Probing Peptide Assembly and Interaction via High-Resolution Imaging Techniques: A Mini Review.
Int J Mol Sci. 2025 Apr 23;26(9):3998. doi: 10.3390/ijms26093998.
4
Recent advances in SERS-based bioanalytical applications: live cell imaging.
Nanophotonics. 2024 Mar 6;13(9):1521-1534. doi: 10.1515/nanoph-2023-0362. eCollection 2024 Apr.
5
Unveiling brain disorders using liquid biopsy and Raman spectroscopy.
Nanoscale. 2024 Jun 27;16(25):11879-11913. doi: 10.1039/d4nr01413h.
6
Super-Resolution SERS Spectral Bioimaging.
Proc SPIE Int Soc Opt Eng. 2022 Aug;12203. doi: 10.1117/12.2632824. Epub 2022 Oct 3.
7
Viewing life without labels under optical microscopes.
Commun Biol. 2023 May 25;6(1):559. doi: 10.1038/s42003-023-04934-8.
8
Raman Spectroscopy as a Tool to Study the Pathophysiology of Brain Diseases.
Int J Mol Sci. 2023 Jan 25;24(3):2384. doi: 10.3390/ijms24032384.
9
A Wide-Field Imaging Approach for Simultaneous Super-Resolution Surface-Enhanced Raman Scattering Bioimaging and Spectroscopy.
ACS Meas Sci Au. 2022 Aug 17;2(4):332-341. doi: 10.1021/acsmeasuresciau.2c00013. Epub 2022 Apr 27.
10
Conformational heterogeneity of molecules physisorbed on a gold surface at room temperature.
Nat Commun. 2022 Jul 15;13(1):4133. doi: 10.1038/s41467-022-31576-x.

本文引用的文献

1
Enhanced super-resolution microscopy by extreme value based emitter recovery.
Sci Rep. 2021 Oct 14;11(1):20417. doi: 10.1038/s41598-021-00066-3.
2
Gold nanoisland substrates for SERS characterization of cultured cells.
Biomed Opt Express. 2019 Nov 8;10(12):6172-6188. doi: 10.1364/BOE.10.006172. eCollection 2019 Dec 1.
3
Tracking Single Molecules in Biomembranes: Is Seeing Always Believing?
ACS Nano. 2019 Oct 22;13(10):10860-10868. doi: 10.1021/acsnano.9b07445. Epub 2019 Oct 7.
4
High-speed imaging of surface-enhanced Raman scattering fluctuations from individual nanoparticles.
Nat Nanotechnol. 2019 Oct;14(10):981-987. doi: 10.1038/s41565-019-0535-6. Epub 2019 Sep 16.
5
Present and Future of Surface-Enhanced Raman Scattering.
ACS Nano. 2020 Jan 28;14(1):28-117. doi: 10.1021/acsnano.9b04224. Epub 2019 Oct 8.
6
Super-resolution Microscopy for Nanomedicine Research.
ACS Nano. 2019 Sep 24;13(9):9707-9712. doi: 10.1021/acsnano.9b05289. Epub 2019 Aug 19.
7
Protein corona-resistant SERS tags for live cell detection of integrin receptors.
Analyst. 2019 Sep 9;144(18):5538-5546. doi: 10.1039/c9an01056d.
8
Monovalent and Oriented Labeling of Gold Nanoprobes for the High-Resolution Tracking of a Single-Membrane Molecule.
ACS Nano. 2019 Oct 22;13(10):10918-10928. doi: 10.1021/acsnano.9b01176. Epub 2019 Jul 1.
9
Surface-Enhanced Raman Scattering Tags for Three-Dimensional Bioimaging and Biomarker Detection.
ACS Sens. 2019 May 24;4(5):1126-1137. doi: 10.1021/acssensors.9b00321. Epub 2019 May 13.
10
WindSTORM: Robust online image processing for high-throughput nanoscopy.
Sci Adv. 2019 Apr 26;5(4):eaaw0683. doi: 10.1126/sciadv.aaw0683. eCollection 2019 Apr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验