Suppr超能文献

使用特定药物的机器学习模型改进七氟醚麻醉状态的跟踪。

Improved tracking of sevoflurane anesthetic states with drug-specific machine learning models.

机构信息

Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America. Tufts University School of Medicine, Boston, United States of America.

出版信息

J Neural Eng. 2020 Aug 4;17(4):046020. doi: 10.1088/1741-2552/ab98da.

Abstract

OBJECTIVE

The ability to monitor anesthetic states using automated approaches is expected to reduce inaccurate drug dosing and side-effects. Commercially available anesthetic state monitors perform poorly when ketamine is administered as an anesthetic-analgesic adjunct. Poor performance is likely because the models underlying these monitors are not optimized for the electroencephalogram (EEG) oscillations that are unique to the co-administration of ketamine.

APPROACH

In this work, we designed two k-nearest neighbors algorithms for anesthetic state prediction.

MAIN RESULTS

The first algorithm was trained only on sevoflurane EEG data, making it sevoflurane-specific. This algorithm enabled discrimination of the sevoflurane general anesthesia (GA) state from sedated and awake states (true positive rate = 0.87, [95% CI, 0.76, 0.97]). However, it did not enable discrimination of the sevoflurane-plus-ketamine GA state from sedated and awake states (true positive rate = 0.43, [0.19, 0.67]). In our second algorithm, we implemented a cross drug training paradigm by including both sevoflurane and sevoflurane-plus-ketamine EEG data in our training set. This algorithm enabled discrimination of the sevoflurane-plus-ketamine GA state from sedated and awake states (true positive rate = 0.91, [0.84, 0.98]).

SIGNIFICANCE

Instead of a one-algorithm-fits-all-drugs approach to anesthetic state monitoring, our results suggest that drug-specific models are necessary to improve the performance of automated anesthetic state monitors.

摘要

目的

使用自动化方法监测麻醉状态有望减少不准确的药物剂量和副作用。当氯胺酮作为麻醉-镇痛辅助药物时,市售的麻醉状态监测器表现不佳。性能不佳可能是因为这些监测器所基于的模型不是针对氯胺酮联合使用时特有的脑电图(EEG)振荡进行优化的。

方法

在这项工作中,我们设计了两种用于麻醉状态预测的 k-最近邻算法。

主要结果

第一个算法仅在七氟醚 EEG 数据上进行训练,使其成为七氟醚专用算法。该算法能够区分七氟醚全身麻醉(GA)状态与镇静和清醒状态(真阳性率=0.87,[95%CI,0.76,0.97])。然而,它不能区分七氟醚加氯胺酮 GA 状态与镇静和清醒状态(真阳性率=0.43,[0.19,0.67])。在我们的第二个算法中,我们通过在训练集中包含七氟醚和七氟醚加氯胺酮 EEG 数据来实现跨药物训练范例。该算法能够区分七氟醚加氯胺酮 GA 状态与镇静和清醒状态(真阳性率=0.91,[0.84,0.98])。

意义

我们的结果表明,对于麻醉状态监测,不是一种算法适用于所有药物,而是需要药物特异性模型来提高自动化麻醉状态监测器的性能。

相似文献

9
Analysis of depth of anesthesia with Hilbert-Huang spectral entropy.基于希尔伯特-黄谱熵的麻醉深度分析
Clin Neurophysiol. 2008 Nov;119(11):2465-75. doi: 10.1016/j.clinph.2008.08.006. Epub 2008 Sep 21.

本文引用的文献

4
Large-Scale Automated Sleep Staging.大规模自动睡眠分期
Sleep. 2017 Oct 1;40(10). doi: 10.1093/sleep/zsx139.
5
EEG Based Monitoring of General Anesthesia: Taking the Next Steps.基于脑电图的全身麻醉监测:迈向新征程
Front Comput Neurosci. 2017 Jun 22;11:56. doi: 10.3389/fncom.2017.00056. eCollection 2017.
10
Electroencephalogram signatures of ketamine anesthesia-induced unconsciousness.氯胺酮麻醉诱导意识丧失的脑电图特征。
Clin Neurophysiol. 2016 Jun;127(6):2414-22. doi: 10.1016/j.clinph.2016.03.005. Epub 2016 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验