Aruna Mangalpady, Vardhan Harsha, Tripathi Abhishek Kumar, Parida Satyajeet, Raja Sekhar Reddy N V, Sivalingam Krishna Moorthy, Yingqiu Li, Elumalai P V
Department of Mining Engineering, National Institute of Technology Karnataka, Surathkal, 575025, India.
Department of Mining Engineering, Aditya University, Surampalem, 53347, Andhra Pradesh, India.
Sci Rep. 2025 Feb 1;15(1):3999. doi: 10.1038/s41598-025-86827-w.
Monitoring and predicting ground vibration levels during blasting operations is essential to safeguard mining sites and surrounding communities. This study introduces an IoT-based ground vibration monitoring device specifically designed for limestone mining operations, combined with machine learning algorithms to predict ground vibration intensity. The primary aim is to provide an efficient predictive tool for anticipating hazardous vibration levels, enabling proactive safety measures. A comparative analysis with the industry-standard Minimate Blaster indicates high accuracy of the IoT device, with percentage errors as low as 0.803% across multiple blasts. The study also employed Support Vector Regression (SVR), Gradient Boosting Regression (GBR), and Random Forest (RF) algorithms to predict Peak Particle Velocity (PPV) values. Among these, the Random Forest model outperformed the others, achieving an R score of 0.92, Mean Absolute Error (MAE) of 0.21, and Root Mean Squared Error (RMSE) of 0.31. These findings underscore the reliability and predictive accuracy of the IoT-integrated Random Forest model, suggesting that it can significantly contribute to enhancing safety and operational efficiency in mining. The research highlights the potential of IoT and machine learning technologies to transform ground vibration monitoring, promoting safer and more sustainable mining practices.
在爆破作业期间监测和预测地面振动水平对于保护矿区和周边社区至关重要。本研究介绍了一种专门为石灰石开采作业设计的基于物联网的地面振动监测设备,并结合机器学习算法来预测地面振动强度。主要目的是提供一种高效的预测工具,用于预测危险的振动水平,从而能够采取主动的安全措施。与行业标准的Minimate Blaster进行的对比分析表明,该物联网设备具有很高的准确性,在多次爆破中百分比误差低至0.803%。该研究还采用支持向量回归(SVR)、梯度提升回归(GBR)和随机森林(RF)算法来预测峰值粒子速度(PPV)值。其中,随机森林模型表现优于其他模型,R得分达到0.92,平均绝对误差(MAE)为0.21,均方根误差(RMSE)为0.31。这些发现强调了物联网集成随机森林模型的可靠性和预测准确性,表明它可以显著有助于提高采矿作业中的安全性和运营效率。该研究突出了物联网和机器学习技术在变革地面振动监测方面的潜力,促进更安全、更可持续的采矿实践。