Suppr超能文献

照顾精神病患者的人幸福感的人口预测因素:试验数据的二次分析。

Demographic predictors of wellbeing in Carers of people with psychosis: secondary analysis of trial data.

机构信息

School of Social Sciences, University of Westminster, London, W1W 6UW, UK.

Research and Development Department, Sussex Education Centre, Brighton and Sussex Medical School, Nevill Avenue, Hove, BN3 7HZ, UK.

出版信息

BMC Psychiatry. 2020 Jun 2;20(1):269. doi: 10.1186/s12888-020-02691-0.

Abstract

BACKGROUND

Carers of people with psychosis are at a greater risk of physical and mental health problems compared to the general population. Yet, not all carers will experience a decline in health. This predicament has provided the rationale for research studies exploring what factors predict poor wellbeing in carers of people with psychosis. Our study builds on previous research by testing the predictive value of demographic variables on carer wellbeing within a single regression model.

METHODS

To achieve this aim, we conducted secondary analysis on two trial data sets that were merged and recoded for the purposes of this study.

RESULTS

Contrary to our hypotheses, only carer gender and age predicted carer wellbeing; with lower levels of carer wellbeing being associated with being female or younger (aged under 50). However, the final regression model explained only 11% of the total variance.

CONCLUSIONS

Suggestions for future research are discussed in light of the limitations inherent in secondary analysis studies. Further research is needed where sample sizes are sufficient to explore the interactive and additive impact of other predictor variables.

摘要

背景

与一般人群相比,精神疾病患者的照顾者面临更大的身心健康问题风险。然而,并非所有照顾者的健康都会下降。这种困境为研究探索哪些因素预测精神疾病患者照顾者的健康不良提供了依据。我们的研究在前人的研究基础上,通过在单一回归模型中测试人口统计学变量对照顾者健康的预测价值,进一步展开研究。

方法

为了实现这一目标,我们对两个试验数据集进行了二次分析,并对其进行了合并和重新编码。

结果

与我们的假设相反,只有照顾者的性别和年龄预测了照顾者的健康;女性或年龄较小(不满 50 岁)的照顾者健康水平较低。然而,最终的回归模型仅解释了总方差的 11%。

结论

根据二次分析研究固有的局限性,讨论了对未来研究的建议。需要进一步的研究,以探索其他预测变量的交互和累加影响,样本量应足够大。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验