Department of Chemistry, University of Rhode Island, 140 Flagg Rd., Kingston, RI, 02881, USA.
Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA.
Anal Bioanal Chem. 2020 Oct;412(25):6639-6654. doi: 10.1007/s00216-020-02717-2. Epub 2020 Jun 1.
A nanopore can be fairly-but uncharitably-described as simply a nanofluidic channel through a thin membrane. Even this simple structural description holds utility and underpins a range of applications. Yet significant excitement for nanopore science is more readily ignited by the role of nanopores as enabling tools for biomedical science. Nanopore techniques offer single-molecule sensing without the need for chemical labelling, since in most nanopore implementations, matter is its own label through its size, charge, and chemical functionality. Nanopores have achieved considerable prominence for single-molecule DNA sequencing. The predominance of this application, though, can overshadow their established use for nanoparticle characterization and burgeoning use for protein analysis, among other application areas. Analyte scope continues to be expanded, and with increasing analyte complexity, success will increasingly hinge on control over nanopore surface chemistry to tune the nanopore, itself, and to moderate analyte transport. Carbohydrates are emerging as the latest high-profile target of nanopore science. Their tremendous chemical and structural complexity means that they challenge conventional chemical analysis methods and thus present a compelling target for unique nanopore characterization capabilities. Furthermore, they offer molecular diversity for probing nanopore operation and sensing mechanisms. This article thus focuses on two roles of chemistry in nanopore science: its use to provide exquisite control over nanopore performance, and how analyte properties can place stringent demands on nanopore chemistry. Expanding the horizons of nanopore science requires increasing consideration of the role of chemistry and increasing sophistication in the realm of chemical control over this nanoscale milieu.
纳米孔可以被相当但不友善地描述为仅仅是通过薄膜的纳米流体通道。即使是这个简单的结构描述也具有实用性,并为一系列应用提供了基础。然而,纳米孔科学的显著兴奋更多地源于纳米孔作为生物医学科学的使能工具的作用。纳米孔技术提供了无需化学标记的单分子传感,因为在大多数纳米孔实现中,物质通过其大小、电荷和化学功能本身就是其自身的标记。纳米孔在单分子 DNA 测序方面取得了相当大的突出成就。然而,这种应用的主导地位可能会掩盖它们在纳米颗粒表征方面的既定用途和在蛋白质分析等其他应用领域的新兴用途。分析物的范围还在不断扩大,随着分析物复杂性的增加,成功将越来越依赖于对纳米孔表面化学的控制,以调整纳米孔本身,并调节分析物的传输。碳水化合物正在成为纳米孔科学的最新热门目标。它们巨大的化学和结构复杂性意味着它们挑战了传统的化学分析方法,因此成为独特的纳米孔表征能力的引人注目的目标。此外,它们为探测纳米孔操作和传感机制提供了分子多样性。因此,本文重点介绍化学在纳米孔科学中的两个作用:它用于提供对纳米孔性能的精细控制,以及分析物特性如何对纳米孔化学提出严格要求。扩大纳米孔科学的视野需要越来越多地考虑化学的作用,并在纳米尺度环境中对化学控制的复杂性进行越来越高的要求。