Dai James Y, LeBlanc Michael
Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, USA.
Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
J R Stat Soc Ser C Appl Stat. 2019 Nov;68(5):1371-1391. doi: 10.1111/rssc.12366. Epub 2019 Jul 8.
Discovering gene-treatment interactions in clinical trials is of rising interest in the era of precision medicine. Nonparametric statistical learning methods such as trees and random forests are useful tools for building prediction rules. In this article, we introduce trees and random forests to the recently proposed case-only approach for discovering gene-treatment interactions and estimating marker-specific treatment effects for a dichotomous trial endpoints. The motivational example is a case-control genetic association study in the Prostate Cancer Prevention Trial (PCPT), which tested the hypothesis whether finasteride can prevent prostate cancer. We compare this novel approach to the interaction tree method previously proposed. Because of the modeling simplicity - directly targeting at interaction - and the statistical efficiency of the case-only approach, case-only trees and random forests yield more accurate prediction of heterogeneous treatment effects and better measure of variable importance, relative to the interaction tree method which uses data from both cases and controls. Application of the proposed case-only trees and random forests to the PCPT study yielded a discovery of genotypes that may influence the prevention effect of finasteride.
在精准医学时代,在临床试验中发现基因与治疗的相互作用越来越受到关注。诸如树模型和随机森林等非参数统计学习方法是构建预测规则的有用工具。在本文中,我们将树模型和随机森林引入到最近提出的仅病例法中,用于发现基因与治疗的相互作用,并估计二分试验终点的标志物特异性治疗效果。激励性示例是前列腺癌预防试验(PCPT)中的一项病例对照基因关联研究,该研究检验了非那雄胺是否可以预防前列腺癌的假设。我们将这种新方法与先前提出的相互作用树方法进行比较。由于建模简单(直接针对相互作用)以及仅病例法的统计效率,相对于使用病例和对照数据的相互作用树方法,仅病例树和随机森林能够更准确地预测异质治疗效果,并更好地衡量变量的重要性。将所提出的仅病例树和随机森林应用于PCPT研究,发现了可能影响非那雄胺预防效果的基因型。