Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX, 79968-0514, USA.
Division of Biostatistics, Washington University in St. Louis, St. Louis, MO, 63130, USA.
Stat Med. 2018 Jul 30;37(17):2547-2560. doi: 10.1002/sim.7660. Epub 2018 Apr 29.
Assessing heterogeneous treatment effects is a growing interest in advancing precision medicine. Individualized treatment effects (ITEs) play a critical role in such an endeavor. Concerning experimental data collected from randomized trials, we put forward a method, termed random forests of interaction trees (RFIT), for estimating ITE on the basis of interaction trees. To this end, we propose a smooth sigmoid surrogate method, as an alternative to greedy search, to speed up tree construction. The RFIT outperforms the "separate regression" approach in estimating ITE. Furthermore, standard errors for the estimated ITE via RFIT are obtained with the infinitesimal jackknife method. We assess and illustrate the use of RFIT via both simulation and the analysis of data from an acupuncture headache trial.
评估异质处理效应是推进精准医学的一个新兴研究方向。个体化治疗效应(ITE)在这一研究中起着至关重要的作用。针对从随机临床试验中收集的实验数据,我们提出了一种基于交互树的方法,即交互树随机森林(RFIT),用于估计 ITE。为此,我们提出了一种平滑的 sigmoid 替代方法,替代贪婪搜索,以加快树的构建。RFIT 在估计 ITE 方面优于“单独回归”方法。此外,通过 RFIT 估计的 ITE 的标准误差是通过无限小的刀切法获得的。我们通过模拟和对头颈痛针灸试验数据的分析,评估并说明了 RFIT 的使用。