Suppr超能文献

随机交互树森林用于估计随机临床试验中的个体化治疗效果。

Random forests of interaction trees for estimating individualized treatment effects in randomized trials.

机构信息

Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX, 79968-0514, USA.

Division of Biostatistics, Washington University in St. Louis, St. Louis, MO, 63130, USA.

出版信息

Stat Med. 2018 Jul 30;37(17):2547-2560. doi: 10.1002/sim.7660. Epub 2018 Apr 29.

Abstract

Assessing heterogeneous treatment effects is a growing interest in advancing precision medicine. Individualized treatment effects (ITEs) play a critical role in such an endeavor. Concerning experimental data collected from randomized trials, we put forward a method, termed random forests of interaction trees (RFIT), for estimating ITE on the basis of interaction trees. To this end, we propose a smooth sigmoid surrogate method, as an alternative to greedy search, to speed up tree construction. The RFIT outperforms the "separate regression" approach in estimating ITE. Furthermore, standard errors for the estimated ITE via RFIT are obtained with the infinitesimal jackknife method. We assess and illustrate the use of RFIT via both simulation and the analysis of data from an acupuncture headache trial.

摘要

评估异质处理效应是推进精准医学的一个新兴研究方向。个体化治疗效应(ITE)在这一研究中起着至关重要的作用。针对从随机临床试验中收集的实验数据,我们提出了一种基于交互树的方法,即交互树随机森林(RFIT),用于估计 ITE。为此,我们提出了一种平滑的 sigmoid 替代方法,替代贪婪搜索,以加快树的构建。RFIT 在估计 ITE 方面优于“单独回归”方法。此外,通过 RFIT 估计的 ITE 的标准误差是通过无限小的刀切法获得的。我们通过模拟和对头颈痛针灸试验数据的分析,评估并说明了 RFIT 的使用。

相似文献

1
Random forests of interaction trees for estimating individualized treatment effects in randomized trials.
Stat Med. 2018 Jul 30;37(17):2547-2560. doi: 10.1002/sim.7660. Epub 2018 Apr 29.
2
Case-only trees and random forests for exploring genotype-specific treatment effects in randomized clinical trials with dichotomous endpoints.
J R Stat Soc Ser C Appl Stat. 2019 Nov;68(5):1371-1391. doi: 10.1111/rssc.12366. Epub 2019 Jul 8.
3
Estimating individual treatment effects by gradient boosting trees.
Stat Med. 2019 Nov 20;38(26):5146-5159. doi: 10.1002/sim.8357. Epub 2019 Aug 28.
4
Risk controlled decision trees and random forests for precision Medicine.
Stat Med. 2022 Feb 20;41(4):719-735. doi: 10.1002/sim.9253. Epub 2021 Nov 16.
5
Estimating individualized treatment effects using an individual participant data meta-analysis.
BMC Med Res Methodol. 2024 Mar 25;24(1):74. doi: 10.1186/s12874-024-02202-9.
7
Model selection for survival individualized treatment rules using the jackknife estimator.
BMC Med Res Methodol. 2022 Dec 22;22(1):328. doi: 10.1186/s12874-022-01811-6.
9
Identification of predicted individual treatment effects in randomized clinical trials.
Stat Methods Med Res. 2018 Jan;27(1):142-157. doi: 10.1177/0962280215623981. Epub 2016 Mar 17.
10
A Simulation-Based Comparison of Covariate Adjustment Methods for the Analysis of Randomized Controlled Trials.
Int J Environ Res Public Health. 2016 Apr 11;13(4):414. doi: 10.3390/ijerph13040414.

引用本文的文献

1
How to select predictive models for decision-making or causal inference.
Gigascience. 2025 Jan 6;14. doi: 10.1093/gigascience/giaf016.
3
Heterogeneous treatment effect estimation for observational data using model-based forests.
Stat Methods Med Res. 2024 Mar;33(3):392-413. doi: 10.1177/09622802231224628. Epub 2024 Feb 8.
6
Diversity Forests: Using Split Sampling to Enable Innovative Complex Split Procedures in Random Forests.
SN Comput Sci. 2022;3(1):1. doi: 10.1007/s42979-021-00920-1. Epub 2021 Oct 21.
7
Predicting mortality in hemodialysis patients using machine learning analysis.
Clin Kidney J. 2020 Aug 11;14(5):1388-1395. doi: 10.1093/ckj/sfaa126. eCollection 2021 May.
8
Designing and analyzing clinical trials for personalized medicine via Bayesian models.
Pharm Stat. 2021 May;20(3):573-596. doi: 10.1002/pst.2095. Epub 2021 Jan 19.
9
Polygenic modelling of treatment effect heterogeneity.
Genet Epidemiol. 2020 Nov;44(8):868-879. doi: 10.1002/gepi.22347. Epub 2020 Aug 10.
10
Case-only trees and random forests for exploring genotype-specific treatment effects in randomized clinical trials with dichotomous endpoints.
J R Stat Soc Ser C Appl Stat. 2019 Nov;68(5):1371-1391. doi: 10.1111/rssc.12366. Epub 2019 Jul 8.

本文引用的文献

1
Tutorial in biostatistics: data-driven subgroup identification and analysis in clinical trials.
Stat Med. 2017 Jan 15;36(1):136-196. doi: 10.1002/sim.7064. Epub 2016 Aug 3.
2
Tree-based methods for individualized treatment regimes.
Biometrika. 2015;102(3):501-514. doi: 10.1093/biomet/asv028. Epub 2015 Jul 15.
3
Biomarker: Predictive or Prognostic?
J Clin Oncol. 2015 Nov 20;33(33):3968-71. doi: 10.1200/JCO.2015.63.3651. Epub 2015 Sep 21.
4
A regression tree approach to identifying subgroups with differential treatment effects.
Stat Med. 2015 May 20;34(11):1818-33. doi: 10.1002/sim.6454. Epub 2015 Feb 5.
6
Estimation and Accuracy after Model Selection.
J Am Stat Assoc. 2014 Jul 1;109(507):991-1007. doi: 10.1080/01621459.2013.823775.
7
Qualitative interaction trees: a tool to identify qualitative treatment-subgroup interactions.
Stat Med. 2014 Jan 30;33(2):219-37. doi: 10.1002/sim.5933. Epub 2013 Aug 6.
8
Estimating Optimal Treatment Regimes from a Classification Perspective.
Stat. 2012 Jan 1;1(1):103-114. doi: 10.1002/sta.411.
9
MissForest--non-parametric missing value imputation for mixed-type data.
Bioinformatics. 2012 Jan 1;28(1):112-8. doi: 10.1093/bioinformatics/btr597. Epub 2011 Oct 28.
10
Subgroup identification from randomized clinical trial data.
Stat Med. 2011 Oct 30;30(24):2867-80. doi: 10.1002/sim.4322. Epub 2011 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验