Suppr超能文献

仅基于病例的方法来识别预测相对风险尺度上治疗效果的标志物。

Case-only approach to identifying markers predicting treatment effects on the relative risk scale.

作者信息

Dai James Y, Liang C Jason, LeBlanc Michael, Prentice Ross L, Janes Holly

机构信息

Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, U.S.A.

Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, U.S.A.

出版信息

Biometrics. 2018 Jun;74(2):753-763. doi: 10.1111/biom.12789. Epub 2017 Sep 28.

Abstract

Retrospectively measuring markers on stored baseline samples from participants in a randomized controlled trial (RCT) may provide high quality evidence as to the value of the markers for treatment selection. Originally developed for approximating gene-environment interactions in the odds ratio scale, the case-only method has recently been advocated for assessing gene-treatment interactions on rare disease endpoints in randomized clinical trials. In this article, the case-only approach is shown to provide a consistent and efficient estimator of marker by treatment interactions and marker-specific treatment effects on the relative risk scale. The prohibitive rare-disease assumption is no longer needed, broadening the utility of the case-only approach. The case-only method is resource-efficient as markers only need to be measured in cases only. It eliminates the need to model the marker's main effect, and can be used with any parametric or nonparametric learning method. The utility of this approach is illustrated by an application to genetic data in the Women's Health Initiative (WHI) hormone therapy trial.

摘要

在随机对照试验(RCT)中,对参与者储存的基线样本进行回顾性标记物测量,可能会为标记物在治疗选择中的价值提供高质量证据。病例对照法最初是为在比值比尺度上近似基因-环境相互作用而开发的,最近有人主张用该方法评估随机临床试验中罕见疾病终点的基因-治疗相互作用。在本文中,病例对照法被证明能在相对风险尺度上为标记物与治疗的相互作用以及标记物特异性治疗效果提供一致且有效的估计值。不再需要严格的罕见病假设,这拓宽了病例对照法的应用范围。病例对照法具有资源高效性,因为只需要在病例中测量标记物。它无需对标记物的主效应进行建模,并且可以与任何参数或非参数学习方法一起使用。通过在女性健康倡议(WHI)激素治疗试验中的基因数据应用,说明了该方法的实用性。

相似文献

3
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

本文引用的文献

1
Post-Selection Inference for -Penalized Likelihood Models.用于惩罚似然模型的选择后推断
Can J Stat. 2018 Mar;46(1):41-61. doi: 10.1002/cjs.11313. Epub 2017 Mar 6.
2
A LASSO FOR HIERARCHICAL INTERACTIONS.用于分层交互的套索法
Ann Stat. 2013 Jun;41(3):1111-1141. doi: 10.1214/13-AOS1096.
4
5
Evaluating marker-guided treatment selection strategies.评估标志物引导的治疗选择策略。
Biometrics. 2014 Sep;70(3):489-499. doi: 10.1111/biom.12179. Epub 2014 Apr 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验