Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands.
Soft Matter. 2020 Jul 21;16(27):6328-6343. doi: 10.1039/d0sm00492h. Epub 2020 Jun 3.
We investigate the mechanical interplay between the spatial organization of the actin cytoskeleton and the shape of animal cells adhering on micropillar arrays. Using a combination of analytical work, computer simulations and in vitro experiments, we demonstrate that the orientation of the stress fibers strongly influences the geometry of the cell edge. In the presence of a uniformly aligned cytoskeleton, the cell edge can be well approximated by elliptical arcs, whose eccentricity reflects the degree of anisotropy of the cell's internal stresses. Upon modeling the actin cytoskeleton as a nematic liquid crystal, we further show that the geometry of the cell edge feeds back on the organization of the stress fibers by altering the length scale at which these are confined. This feedback mechanism is controlled by a dimensionless number, the anchoring number, representing the relative weight of surface-anchoring and bulk-aligning torques. Our model allows to predict both cellular shape and the internal structure of the actin cytoskeleton and is in good quantitative agreement with experiments on fibroblastoid (GDβ1, GDβ3) and epithelioid (GEβ1, GEβ3) cells.
我们研究了肌动球蛋白细胞骨架的空间组织与黏附在微柱阵列上的动物细胞形状之间的力学相互作用。通过分析工作、计算机模拟和体外实验的结合,我们证明了应力纤维的方向强烈影响细胞边缘的几何形状。在具有均匀排列的细胞骨架的情况下,细胞边缘可以很好地用椭圆弧近似,其偏心率反映了细胞内部应力的各向异性程度。在将肌动球蛋白细胞骨架建模为向列液晶后,我们进一步表明,通过改变这些纤维的限制长度尺度,细胞边缘的几何形状会对应力纤维的组织产生反馈。这种反馈机制由一个无量纲数,即锚定数来控制,它代表了表面锚定和体相排列扭矩的相对权重。我们的模型可以预测细胞形状和肌动球蛋白细胞的内部结构,并与成纤维样(GDβ1、GDβ3)和上皮样(GEβ1、GEβ3)细胞的实验结果很好地吻合。