Hane Christopher A, Nori Vijay S, Crown William H, Sanghavi Darshak M, Bleicher Paul
OptumLabs, Optum, Cambridge, MA, United States.
JMIR Med Inform. 2020 Jun 3;8(6):e17819. doi: 10.2196/17819.
Clinical trials need efficient tools to assist in recruiting patients at risk of Alzheimer disease and related dementias (ADRD). Early detection can also assist patients with financial planning for long-term care. Clinical notes are an important, underutilized source of information in machine learning models because of the cost of collection and complexity of analysis.
This study aimed to investigate the use of deidentified clinical notes from multiple hospital systems collected over 10 years to augment retrospective machine learning models of the risk of developing ADRD.
We used 2 years of data to predict the future outcome of ADRD onset. Clinical notes are provided in a deidentified format with specific terms and sentiments. Terms in clinical notes are embedded into a 100-dimensional vector space to identify clusters of related terms and abbreviations that differ across hospital systems and individual clinicians.
When using clinical notes, the area under the curve (AUC) improved from 0.85 to 0.94, and positive predictive value (PPV) increased from 45.07% (25,245/56,018) to 68.32% (14,153/20,717) in the model at disease onset. Models with clinical notes improved in both AUC and PPV in years 3-6 when notes' volume was largest; results are mixed in years 7 and 8 with the smallest cohorts.
Although clinical notes helped in the short term, the presence of ADRD symptomatic terms years earlier than onset adds evidence to other studies that clinicians undercode diagnoses of ADRD. De-identified clinical notes increase the accuracy of risk models. Clinical notes collected across multiple hospital systems via natural language processing can be merged using postprocessing techniques to aid model accuracy.
临床试验需要有效的工具来协助招募有患阿尔茨海默病及相关痴呆症(ADRD)风险的患者。早期检测还可以帮助患者进行长期护理的财务规划。临床记录是机器学习模型中一个重要但未得到充分利用的信息来源,原因在于收集成本和分析的复杂性。
本研究旨在调查使用从多个医院系统收集的、长达10年的去识别化临床记录,以增强ADRD发病风险的回顾性机器学习模型。
我们使用两年的数据来预测ADRD发病的未来结果。临床记录以去识别化的格式提供,包含特定的术语和情感。临床记录中的术语被嵌入到一个100维向量空间中,以识别不同医院系统和个体临床医生之间不同的相关术语和缩写词簇。
在疾病发病模型中,使用临床记录时,曲线下面积(AUC)从0.85提高到0.94,阳性预测值(PPV)从45.07%(25,245/56,018)提高到68.32%(14,153/20,717)。在第3至6年,当记录数量最多时,包含临床记录的模型在AUC和PPV方面均有所改善;在第7年和第8年,队列最小,结果好坏参半。
尽管临床记录在短期内有帮助,但在发病前数年出现的ADRD症状性术语为其他研究提供了更多证据,表明临床医生对ADRD的诊断编码不足。去识别化的临床记录提高了风险模型的准确性。通过自然语言处理在多个医院系统收集的临床记录可以使用后处理技术进行合并,以提高模型准确性。