Sanulli Serena, Gross John D, Narlikar Geeta J
Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, USA.
Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA.
Cold Spring Harb Symp Quant Biol. 2019;84:217-225. doi: 10.1101/sqb.2019.84.040360. Epub 2020 Jun 3.
Heterochromatin is a classic context for studying the mechanisms of chromatin organization. At the core of a highly conserved type of heterochromatin is the complex formed between chromatin methylated on histone H3 lysine 9 and HP1 proteins. This type of heterochromatin plays central roles in gene repression, genome stability, and nuclear mechanics. Systematic studies over the last several decades have provided insight into the biophysical mechanisms by which the HP1-chromatin complex is formed. Here, we discuss these studies together with recent findings indicating a role for phase separation in heterochromatin organization and function. We suggest that the different functions of HP1-mediated heterochromatin may rely on the increasing diversity being uncovered in the biophysical properties of HP1-chromatin complexes.
异染色质是研究染色质组织机制的经典背景。一种高度保守的异染色质类型的核心是在组蛋白H3赖氨酸9上甲基化的染色质与HP1蛋白之间形成的复合物。这种类型的异染色质在基因抑制、基因组稳定性和核力学中发挥着核心作用。过去几十年的系统研究深入了解了HP1-染色质复合物形成的生物物理机制。在这里,我们将这些研究与最近的发现一起进行讨论,这些发现表明相分离在异染色质组织和功能中发挥作用。我们认为,HP1介导的异染色质的不同功能可能依赖于HP1-染色质复合物生物物理特性中不断发现的越来越多的多样性。