Suppr超能文献

趋同基因塑造出芽殖酵母着丝粒周围区域。

Convergent genes shape budding yeast pericentromeres.

机构信息

The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.

Genome Damage and Stability Centre, University of Sussex, Brighton, UK.

出版信息

Nature. 2020 Jun;582(7810):119-123. doi: 10.1038/s41586-020-2244-6. Epub 2020 Apr 29.

Abstract

The three-dimensional architecture of the genome governs its maintenance, expression and transmission. The cohesin protein complex organizes the genome by topologically linking distant loci, and is highly enriched in specialized chromosomal domains surrounding centromeres, called pericentromeres. Here we report the three-dimensional structure of pericentromeres in budding yeast (Saccharomyces cerevisiae) and establish the relationship between genome organization and function. We find that convergent genes mark pericentromere borders and, together with core centromeres, define their structure and function by positioning cohesin. Centromeres load cohesin, and convergent genes at pericentromere borders trap it. Each side of the pericentromere is organized into a looped conformation, with border convergent genes at the base. Microtubule attachment extends a single pericentromere loop, size-limited by convergent genes at its borders. Reorienting genes at borders into a tandem configuration repositions cohesin, enlarges the pericentromere and impairs chromosome biorientation during mitosis. Thus, the linear arrangement of transcriptional units together with targeted cohesin loading shapes pericentromeres into a structure that is competent for chromosome segregation. Our results reveal the architecture of the chromosomal region within which kinetochores are embedded, as well as the restructuring caused by microtubule attachment. Furthermore, we establish a direct, causal relationship between the three-dimensional genome organization of a specific chromosomal domain and cellular function.

摘要

基因组的三维结构控制着它的维持、表达和传递。黏合蛋白复合物通过拓扑连接远距离的基因座来组织基因组,并且在围绕着着丝粒的专门的染色体结构域(称为着丝粒周围区)中高度富集。在这里,我们报告了芽殖酵母(酿酒酵母)着丝粒周围区的三维结构,并建立了基因组组织和功能之间的关系。我们发现,趋同基因标记着丝粒周围区的边界,与核心着丝粒一起,通过定位黏合蛋白来确定其结构和功能。着丝粒加载黏合蛋白,而着丝粒周围区边界的趋同基因则将其捕获。着丝粒周围区的每一侧都组织成一个环构象,边界的趋同基因位于其底部。微管附着延伸了单个着丝粒环,其大小受边界趋同基因的限制。将边界的定向基因重新配置成串联构型,重新定位黏合蛋白,增大着丝粒并在有丝分裂过程中损害染色体的双定向。因此,转录单元的线性排列加上靶向黏合蛋白加载,将着丝粒周围区塑造成一种有能力进行染色体分离的结构。我们的结果揭示了动粒嵌入的染色体区域的结构,以及微管附着引起的重构。此外,我们建立了特定染色体结构域的三维基因组组织与细胞功能之间的直接因果关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/300a/7279958/b9c6ad9c14d2/EMS85894-f005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验