Zhou Guangmin, Yang Ankun, Gao Guoping, Yu Xiaoyun, Xu Jinwei, Liu Chenwei, Ye Yusheng, Pei Allen, Wu Yecun, Peng Yucan, Li Yanxi, Liang Zheng, Liu Kai, Wang Lin-Wang, Cui Yi
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
Sci Adv. 2020 May 22;6(21):eaay5098. doi: 10.1126/sciadv.aay5098. eCollection 2020 May.
In lithium-sulfur (Li-S) chemistry, the electrically/ionically insulating nature of sulfur and LiS leads to sluggish electron/ion transfer kinetics for sulfur species conversion. Sulfur and LiS are recognized as solid at room temperature, and solid-liquid phase transitions are the limiting steps in Li-S batteries. Here, we visualize the distinct sulfur growth behaviors on Al, carbon, Ni current collectors and demonstrate that (i) liquid sulfur generated on Ni provides higher reversible capacity, faster kinetics, and better cycling life compared to solid sulfur; and (ii) Ni facilitates the phase transition (e.g., LiS decomposition). Accordingly, light-weight, 3D Ni-based current collector is designed to control the deposition and catalytic conversion of sulfur species toward high-performance Li-S batteries. This work provides insights on the critical role of the current collector in determining the physical state of sulfur and elucidates the correlation between sulfur state and battery performance, which will advance electrode designs in high-energy Li-S batteries.
在锂硫(Li-S)化学中,硫和LiS的电绝缘/离子绝缘性质导致硫物种转化的电子/离子转移动力学迟缓。硫和LiS在室温下被认为是固体,固液相转变是锂硫电池的限制步骤。在此,我们可视化了硫在铝、碳、镍集流体上不同的生长行为,并证明:(i)与固体硫相比,镍上生成的液态硫具有更高的可逆容量、更快的动力学和更好的循环寿命;(ii)镍促进了相转变(如LiS分解)。因此,设计了轻质的三维镍基集流体,以控制硫物种的沉积和催化转化,从而实现高性能锂硫电池。这项工作提供了关于集流体在决定硫的物理状态方面关键作用的见解,并阐明了硫状态与电池性能之间的相关性,这将推动高能锂硫电池的电极设计。