Shi Fangyi, Guo Xuyun, Chen Chunhong, Zhuang Lyuchao, Yu Jingya, Qi Qi, Zhu Ye, Xu Zheng-Long, Lau Shu Ping
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, People's Republic of China.
Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, People's Republic of China.
Nano Lett. 2023 Sep 13;23(17):7906-7913. doi: 10.1021/acs.nanolett.3c01633. Epub 2023 Aug 24.
A recent study of liquid sulfur produced in an electrochemical cell has prompted further investigation into regulating Li-S oxidation chemistry. In this research, we examined the liquid-to-solid sulfur transition dynamics by visually observing the electrochemical generation of sulfur on a graphene-based substrate. We investigated the charging of polysulfides at various current densities and discovered a quantitative correlation between the size and number density of liquid sulfur droplets and the applied current. However, the areal capacities exhibited less sensitivity. This observation offers valuable insights for designing fast-charging sulfur cathodes. By incorporating liquid sulfur into Li-S batteries with a high sulfur loading of 4.2 mg cm, the capacity retention can reach ∼100%, even when increasing the rate from 0.1 to 3 C. This study contributes to a better understanding of the kinetics involved in the liquid-solid sulfur growth in Li-S chemistry and presents viable strategies for optimizing fast-charging operations.
最近一项关于在电化学电池中产生的液态硫的研究促使人们进一步研究如何调节锂硫氧化化学过程。在这项研究中,我们通过视觉观察在基于石墨烯的基底上硫的电化学生成过程,研究了液-固硫转变动力学。我们研究了在各种电流密度下多硫化物的充电情况,并发现了液态硫滴的尺寸和数密度与施加电流之间的定量关系。然而,面积容量表现出较低的灵敏度。这一观察结果为设计快速充电硫阴极提供了有价值的见解。通过将液态硫纳入硫负载量为4.2 mg/cm²的高硫负载锂硫电池中,即使将倍率从0.1 C提高到3 C,容量保持率仍可达到约100%。这项研究有助于更好地理解锂硫化学中液-固硫生长所涉及的动力学,并提出了优化快速充电操作的可行策略。