Suppr超能文献

通过工程化群体动态将基因回路与微电子学相结合。

Interfacing gene circuits with microelectronics through engineered population dynamics.

作者信息

Din M Omar, Martin Aida, Razinkov Ivan, Csicsery Nicholas, Hasty Jeff

机构信息

BioCircuits Institute, University of California, San Diego, La Jolla, CA, USA.

Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.

出版信息

Sci Adv. 2020 May 22;6(21):eaaz8344. doi: 10.1126/sciadv.aaz8344. eCollection 2020 May.

Abstract

While there has been impressive progress connecting bacterial behavior with electrodes, an attractive observation to facilitate advances in synthetic biology is that the growth of a bacterial colony can be determined from impedance changes over time. Here, we interface synthetic biology with microelectronics through engineered population dynamics that regulate the accumulation of charged metabolites. We demonstrate electrical detection of the bacterial response to heavy metals via a population control circuit. We then implement this approach to a synchronized genetic oscillator where we obtain an oscillatory impedance profile from engineered bacteria. We lastly miniaturize an array of electrodes to form "bacterial integrated circuits" and demonstrate its applicability as an interface with genetic circuits. This approach paves the way for new advances in synthetic biology, analytical chemistry, and microelectronic technologies.

摘要

虽然在将细菌行为与电极连接方面已经取得了令人瞩目的进展,但一个有助于合成生物学进步的有趣观察结果是,可以根据随时间变化的阻抗来确定细菌菌落的生长情况。在这里,我们通过调节带电代谢物积累的工程化种群动态,将合成生物学与微电子学相结合。我们通过种群控制电路展示了对细菌对重金属反应的电学检测。然后,我们将这种方法应用于同步遗传振荡器,从工程细菌中获得了振荡阻抗曲线。最后,我们将电极阵列小型化以形成“细菌集成电路”,并展示了其作为与遗传电路接口的适用性。这种方法为合成生物学、分析化学和微电子技术的新进展铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf59/7244307/261506b68ddb/aaz8344-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验