Suppr超能文献

开发和验证慢性疾病人群风险工具(CDPoRT),以预测成人慢性疾病的发病率。

Development and Validation of the Chronic Disease Population Risk Tool (CDPoRT) to Predict Incidence of Adult Chronic Disease.

机构信息

Dalla Lana School of Public Health, Division of Epidemiology, University of Toronto, Toronto, Ontario, Canada.

ICES, Toronto, Ontario, Canada.

出版信息

JAMA Netw Open. 2020 Jun 1;3(6):e204669. doi: 10.1001/jamanetworkopen.2020.4669.

Abstract

IMPORTANCE

Predicting chronic disease incidence for the population provides a comprehensive picture to health policy makers of their jurisdictions' overall future chronic disease burden. However, no population-based risk algorithm exists for estimating the risk of first major chronic disease.

OBJECTIVE

To develop and validate the Chronic Disease Population Risk Tool (CDPoRT), a population risk algorithm that predicts the 10-year incidence of the first major chronic disease in the adult population.

DESIGN, SETTING, AND PARTICIPANTS: In this cohort study, CDPoRT was developed and validated with 6 cycles of the Canadian Community Health Survey, linked to administrative data from January 2000 to December 2014. Development and internal validation (bootstrap and split sample) of CDPoRT occurred in Ontario, Canada, from June 2018 to April 2019 followed by external validation in Manitoba from May 2019 to July 2019. The study cohorts included 133 991 adults (≥20 years) representative of the Ontario and Manitoba populations who did not have a history of major chronic disease.

EXPOSURES

Predictors were routinely collected risk factors from the Canadian Community Health Survey, such as sociodemographic factors (eg, age), modifiable lifestyle risk factors (ie, alcohol consumption, cigarette smoking, unhealthy diet, and physical inactivity), and other health-related factors (eg, body mass index).

MAIN OUTCOMES AND MEASURES

Six major chronic diseases were considered, as follows: congestive heart failure, chronic obstructive pulmonary disease, diabetes, myocardial infarction, lung cancer, and stroke. Sex-specific CDPoRT algorithms were developed with a Weibull model. Model performance was evaluated with measures of overall predictive performance (eg, Brier score), discrimination (eg, Harrell C index), and calibration (eg, calibration curves).

RESULTS

The Ontario cohort (n = 118 747) was younger (mean [SD] age, 45.6 [16.1] vs 46.3 [16.4] years), had more immigrants (23 808 [20.0%] vs 1417 [10.7%]), and had a lower mean (SD) body mass index (26.9 [5.1] vs 27.7 [5.4]) than the Manitoba cohort (n = 13 244). During development, the full and parsimonious CDPoRT models had similar Brier scores (women, 0.087; men, 0.091), Harrell C index values (women, 0.779; men, 0.783), and calibration curves. A simple version consisting of cigarette smoking, age, and body mass index performed slightly worse than the other versions (eg, Brier score for women, 0.088; for men, 0.092). Internal validation showed consistent performance across models, and CDPoRT performed well during external validation. For example, the female parsimonious version had C index values for bootstrap, split sample, and external validation of 0.778, 0.776, and 0.752, respectively.

CONCLUSIONS AND RELEVANCE

In this study, CDPoRT provided accurate, population-based risk estimates for the first major chronic disease.

摘要

重要性

预测人口的慢性病发病率为卫生政策制定者提供了其管辖范围内整体未来慢性病负担的全面情况。然而,目前还没有基于人群的风险算法来估计首次主要慢性病的风险。

目的

开发和验证慢性病人群风险工具(CDPoRT),这是一种预测成年人群体首次主要慢性病 10 年发病率的人群风险算法。

设计、设置和参与者:在这项队列研究中,CDPoRT 的开发和验证使用了加拿大社区健康调查的 6 个周期,与 2000 年 1 月至 2014 年 12 月的行政数据相关联。CDPoRT 的开发和内部验证(自举和拆分样本)在加拿大安大略省进行,时间为 2018 年 6 月至 2019 年 4 月,随后在 2019 年 5 月至 7 月在马尼托巴省进行了外部验证。研究队列包括 133991 名成年人(≥20 岁),代表安大略省和马尼托巴省的人群,他们没有主要慢性疾病的病史。

暴露因素

预测因素是从加拿大社区健康调查中常规收集的风险因素,例如社会人口统计学因素(例如年龄)、可改变的生活方式风险因素(即饮酒、吸烟、不健康的饮食和缺乏身体活动)以及其他与健康相关的因素(例如,体重指数)。

主要结果和措施

考虑了六种主要慢性疾病,如下所示:充血性心力衰竭、慢性阻塞性肺疾病、糖尿病、心肌梗死、肺癌和中风。为每个性别开发了 Weibull 模型的特定性别 CDPoRT 算法。使用整体预测性能(例如,Brier 评分)、区分度(例如,Harrell C 指数)和校准(例如,校准曲线)来评估模型性能。

结果

安大略省队列(n=118747)年龄较小(平均[标准差]年龄,45.6[16.1] vs 46.3[16.4]岁),移民人数较多(23808[20.0%] vs 1417[10.7%]),平均(标准差)体重指数(26.9[5.1] vs 27.7[5.4])较低比马尼托巴省队列(n=13244)。在开发过程中,完整和简约的 CDPoRT 模型具有相似的 Brier 评分(女性,0.087;男性,0.091)、Harrell C 指数值(女性,0.779;男性,0.783)和校准曲线。由吸烟、年龄和体重指数组成的简单版本的性能略逊于其他版本(例如,女性的 Brier 评分,0.088;男性,0.092)。内部验证表明模型表现一致,CDPoRT 在外部验证中表现良好。例如,女性简约版本的 bootstrap、拆分样本和外部验证的 C 指数值分别为 0.778、0.776 和 0.752。

结论和相关性

在这项研究中,CDPoRT 为首次主要慢性病提供了准确的基于人群的风险估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dae/7273197/271e023dae07/jamanetwopen-3-e204669-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验